Observation of Higgs Boson Decays to bb with the ATLAS Detector

Changqiao LI (李昌樵) University of Science and Technology of China

Seminar at Institute of High Energy Physics , Chinese Academy of Science 28/03/2019

Outline

- Standard Model (SM) Higgs Boson
 - Search for $H \rightarrow b\overline{b}$ at colliders
 - LHC and ATLAS
- Search for VH, $H \rightarrow b\overline{b}$ production with ATLAS data
 - Evidence of VH, $H \rightarrow b\overline{b}$ production with 36 fb⁻¹ JHEP 12 (2017) 024
 - Observation of $H \rightarrow b\overline{b}$ decays and VH production with 80 fb⁻¹

PLB 786 (2018) 59

- Future prospects
 - VH simplified template cross section (STXS) measurement

Higgs boson phenomenology at the LHC

- ► ZZ, yy: small BR, high resolution, good S/B
- ► WW: large BR, poor resolution
- µµ: very small BR, access to coupling to 2nd generation fermions
- tt: forbidden (but Htt coupling can be studied with ttH production)
- ▶ bb, TT: large BR, poor resolution, low S/B, probe couplings to 3rd generation fermions

Higgs boson discovery and measurements in Run-1

- Higgs boson was discovered in 2012 by ATLAS and CMS from the combination of the decays to
 - ► H → γγ
 - $H \rightarrow ZZ^*$
 - ► H → WW*

Phys. Lett. B716 (2012) 1 Phys. Lett. B716 (2012) 30

- ► Run-1 measurements:
 - mass = 125.09 ± 0.24 GeV
 Phys. Rev. Lett. 114, 191803 (2015)
 - ▶ Properties in agreement with SM predictions for m_H~125 GeV
 - Spin-0, CP-even Eur. Phys. J. C 75 (2015) 476
 - ► SM-like couplings JHEP 08 (2016) 045

Recent results from ATLAS Run-2 data

- Several production and decay modes measured with 36-80 fb⁻¹ of 13 TeV data
- Good agreement with SM for
 - global signal strength μ (= measured σ *BR / SM prediction)
 - ratios of cross sections of various production modes

$$\mu = 1.13^{+0.09}_{-0.08}$$

- ratios of branching ratios to different decay modes
- couplings

ATLAS-CONF-2018-031

Searches for $H \rightarrow b\overline{b}$ at hadron colliders

VH, $H \rightarrow b\overline{b}$: previous results (before Run-2)

	$\mu = \frac{\sigma \cdot BR}{\sigma \cdot BR}$		
	$\mu = rac{\sigma_{ m SM} \cdot { m BR}_{ m SM}}{ m Signal \ strength}$	Significance (expected)	Significance (observed)
CDF+DØ combination [1]	$1.9\substack{+0.8 \\ -0.7}$	1.5σ	2.8σ (3.1σ global)
ATLAS Run-I [2]	$0.52\substack{+0.40 \\ -0.37}$	2.6σ	1.4σ
CMS Run-1 [3]	$0.89\substack{+0.47 \\ -0.44}$	2.5σ	2.1σ
ATLAS+CMS Run-I* [4]	$0.70\substack{+0.29 \\ -0.27}$	3.7σ	2.6σ
*with sub-leadir	[1] Phys. Rev. Lett. 109 (2012) 071804[2] JHEP01(2015)069		

[2] JHEP01(2013)009 [3] Eur.Phys.J. C75(5), 212 (2015) + <u>twiki</u> [4] JHEP08(2016)045

- ▶ Before LHC Run-2, no observation of VH, $H \rightarrow b\overline{b}$
- Identification of b-jet is crucial from Run-1 experience
 - Efficiency plays a key role in sensitivity
 - ► Large impact on relative uncertainty on µ (13% in ATLAS Run-1)

Large Hadron Collider @ CERN

ATLAS Experiment @ LHC

General-purpose, ~ 4π detector for multi-TeV pp collisions

Object reconstruction in ATLAS

- ► Hadrons are clustered → jets
 - Anti-kt clustering algorithm (R=0.4)
 - MC-based calibration + in-situ correction (Z+jet, γ+jet, multijets)
- ▶ Weakly interacting particles
 → transverse momentum
 imbalance (MET)

$$ec{E}_T^{ ext{miss}} = -\sum_{ ext{observable}} ec{p}_i$$

 use calibrated identified particles + "soft term"
 from unassociated charged particle tracks

b-jet identification in ATLAS

- b-jets: jets containing b hadrons
- Identification ("tagging") of b-jets fundamental for:
 - Precision measurements in the top quark sector
 - Higgs boson decays to b quarks
 - New phenomena producing b quarks
- Three basic algorithms exploiting long lifetime of b-hadrons:
 - Tracks with large impact parameters (IP)
 - Inclusive secondary vertices (SV)
 - Eventual tertiary vertices
- Output combined into Boosted Decisions Tree (BDT): MV2

Outline

- Standard Model (SM) Higgs Boson
 - Search for $H \rightarrow b\overline{b}$ at colliders
 - LHC and ATLAS
- Search for VH, $H \rightarrow b\overline{b}$ production with ATLAS data
 - Evidence of VH, $H \rightarrow b\overline{b}$ production with 36 fb⁻¹ JHEP 12 (2017) 024
 - Observation of $H \rightarrow b\overline{b}$ decays and VH production with 80 fb⁻¹ PLB 786 (2018) 59
- Future prospects
 - VH simplified template cross section (STXS) measurement

VH, H→bb search with ATLAS Run-2 data

Simulated event samples

State-of-the-art NLO Monte Carlo generators normalised to higher-order calculations for the description of all backgrounds (except for multi-jet that is data-driven) and signals

Process	Generator (PDF set)	
Vector boson $+$ jets		
$Z \rightarrow \nu \nu$	Sherpa 2.2.1 (NNPDF3.0NNLO)	
$W \rightarrow \ell \nu$	Sherpa 2.2.1 (NNPDF3.0NNLO)	Main beakaraund
$Z\gamma^* \to \ell\ell$	Sherpa 2.2.1 (NNPDF3.0NNLO)	Main background
Top-quark		processes:
$t \overline{t}$	Powheg v2 + Pythia 8 (NNPDF3.0NNLO)	Top-quark production
t, s-channel	Powheg $v1 + Pythia 6 (CT10)$	► 7±iets (beavy-flavours)
t, t-channel	Powheg $v1 + Pythia 6 (CT10)$	
t, Wt-channel	Powheg $v1 + Pythia 6 (CT10)$	W+jets (heavy-flavours)
Diboson		▶ Diboson
WW	Sherpa $2.2.1$ (CT10)	
WZ	Sherpa 2.2.1 (NNPDF3.0NNLO)	
ZZ	Sherpa 2.2.1 (NNPDF3.0NNLO)	

Background

Signal

Process	Generator (PDF set)
$qq \rightarrow ZH \rightarrow \nu \nu b\bar{b}$	Powheg v2 + MiNLO + Pythia 8 (PDF4LHC15)
$qq \rightarrow W^+H \rightarrow \ell^+ \nu b\bar{b}$	Powheg $v_2 + MiNLO + Pythia 8$ (PDF4LHC15)
$qq \rightarrow W^- H \rightarrow \ell^- \nu b \bar{b}$	Powheg $v_2 + MiNLO + Pythia 8$ (PDF4LHC15)
$qq \rightarrow ZH \rightarrow \ell\ell b\bar{b}$	Powheg v2 + MiNLO + Pythia 8 (PDF4LHC15)
$gg \rightarrow ZH \rightarrow \nu \nu b \bar{b}$	Powheg $v2 + Pythia 8 (PDF4LHC15)$
$gg \rightarrow ZH \rightarrow \ell \ell b \bar{b}$	Powheg v2 + Pythia 8 (PDF4LHC15)

Signal signature and basic selection

► H (\rightarrow bb) recoiling against V (\rightarrow leptons)

H → bb

- ► 2 high-p_T b-jets, not from pile-up, b-tagged
- Kinematic properties consistent with VH production, e.g. m_{bb}~125 GeV

V→leptons

- 1 or 2 isolated charged leptons (W→lv, Z→II) and/or large MET (Z→vv, W→µv)
 - also useful for triggering purposes
 - ► Z→II: same flavour, m_{II}~m_Z
- Channels denoted by the number of reconstructed charged leptons (e or µ)

Specific selection vs lepton channel

- Additional selection criteria to suppress processes hard to model and estimate: QCD multi-jet
 - ► Take the 0-lepton as an example

Variable	Selection						
MET	>150 GeV						
$H_T = \Sigma p_T$ jets	>120 GeV for 2-jet events >150 GeV for 3-jet events						
$\Delta \phi(E_T^{miss}, p_T^{miss})$	< 90°						
Δφ(b,b)	< 140°						
Δφ(E _T miss,bb)	> 120°						
min[Δφ(E _T miss,jet)]	> 20° for 2-jet events > 30° for 3-jet events						

H_T cut to avoid trigger turn-on mis-modelling
 Angular cuts to reject QCD multi-jet

Control regions and event categories

Control regions (CR) to constrain main backgrounds:

• **Event categories** with different S/B to increase sensitivity:

The analysis strategy: Multivariate approach

- Final S/B discrimination from fit to score of BDT combining several input variables
 - Start from a minimal set of variables with largest S/B separation [m_{bb}, ΔR_{bb}]
 - ► Test additional variables one-by-one, keep variable providing maximum sensitivity
 - Iterate the procedure until the sensitivity improvement is negligible
- ► Separate training for lepton/p_TV/N_{jet} regions

Variable	0-lepton	1-lepton	2-lepton
p_{T}^{V}	$\equiv E_{\mathrm{T}}^{\mathrm{miss}}$	×	×
$E_{\mathrm{T}}^{\mathrm{miss}}$	×	×	×
$p_{\mathrm{T}}^{b_1}$	×	×	×
$p_{\mathrm{T}}^{b_2}$	×	×	×
m_{bb}	×	×	×
$\Delta R(oldsymbol{b}_1,oldsymbol{b}_2)$	×	×	×
$ \Delta\eta(m{b}_1,m{b}_2) $	×		
$\Delta \phi(oldsymbol{V},oldsymbol{b}oldsymbol{b})$	×	×	×
$ \Delta \eta(oldsymbol{V},oldsymbol{bb}) $			×
$m_{ m eff}$	×		
$\min[\Delta \phi({m\ell},{m b})]$		×	
m_{T}^W		×	
$m_{\ell\ell}$			×
$m_{ m top}$		×	
$ \Delta y(oldsymbol{V},oldsymbol{bb}) $		×	
	Only	in 3-jet ev	vents
$p_{\mathrm{T}}^{\mathrm{jet}_3}$	×	×	×
m_{bbj}	×	×	×

The Fit Model

Combined Likelihood fit is built across channels and multiple analysis regions

		Categories								
Channel	SR/CR	$75\mathrm{GeV}$	$V < p_{\rm T}^V < 150 {\rm GeV}$	$p_{\rm T}^V > 150{\rm GeV}$						
	/	2 jets	3 jets	2 jets	3 jets					
0-lepton	SR			BDT	BDT					
1-lepton	SR			BDT	BDT					
2-lepton	SR	BDT	BDT	BDT	BDT					
1-lepton	W + HF CR			Yield	Yield					
2-lepton	$e\mu$ CR	m_{bb}	m_{bb}	Yield	m_{bb}					

Each bin contributes with a Poisson term

$$\mathcal{L}(\mu, \boldsymbol{\theta}) = \left[\prod_{i \in \text{bins}} \text{Pois}\left(n^i | \mu \nu_s^i(\boldsymbol{\theta}) + \nu_b^i(\boldsymbol{\theta})\right)\right]$$

Parameter of interest

$$\mu = \frac{\sigma \cdot BR}{\sigma_{SM} \cdot BR_{SM}}$$

Nuisance parameters (NPs) θ :

- Uncertainties from performance:
 - Lepton / Jet / MET / b-tagging
- Parametrized shapes and relative normalisations across regions

Cross-checks

Diboson cross-check

- ► VZ, Z → $b\bar{b}$ same final states as VH, H → $b\bar{b}$
- ► Same analysis, but with VZ, $Z \rightarrow b\overline{b}$ as signal
- ► BDT re-trained with VZ as signal (BDT_{VZ})
- ► Fit BDT_{VZ} distribution to extract µ_{VZ}

Dijet mass cross-check

- VH, $H \rightarrow b\bar{b}$ as the signal
- ► Fit m_{bb} distribution instead of BDT_{VH}
- Additional selections to compensate for sensitivity loss due to simpler fit discriminant

Cross-checks: Results with 36 fb⁻¹

Signal strength

 $\mu_{VZ} = 1.11^{+0.12}_{-0.11} (\text{stat.})^{+0.22}_{-0.19} (\text{syst.})$

- Expected significance: 5.3σ
- Observed significance: 5.8σ

VZ, $Z \rightarrow b\bar{b}$

Signal strength

 $\mu = 1.30^{+0.28}_{-0.27}(\text{stat.})^{+0.37}_{-0.29}(\text{syst.})$

- Expected significance: 2.8σ
- Observed significance: 3.5σ

VH, H → bb̄ Dijet mass

Impact of systematic uncertainties on μ_{VH}

Source of uncertainty σ_{μ}							
Total		0.39					
Statistical		0.24					
Systematic		0.31					
Experimenta	al uncertainties						
Jets		0.03					
$E_{\mathrm{T}}^{\mathrm{miss}}$		0.03					
Leptons		0.01					
	b-jets	0.09	٦				
b-tagging	c-jets	0.04	l				
	light jets	0.04	ſ				
	extrapolation	0.01	J				
Pile-up		0.01					
Luminosity		0.04					
Theoretical	and modelling un	certaintie	\mathbf{s}				
Signal		0.17	-				
Floating nor	malisations	0.07					
Z + jets		0.07					
$W + ext{jets}$	0.07						
$tar{t}$	0.07	}					
Single top qu	0.08						
Diboson		0.02					
Multi-jet		0.02	J				

0.13

22

MC statistical

- Dominant effects:
 - Signal Modelling
 - Background Modelling
 - ► W+jet
 - ► Single top Wt
 - ► Z+jets
 - ► tt
 - b-tagging calibration
 - Limited Monte Carlo statistics

VH, $H \rightarrow b\overline{b}$ results with 36 fb⁻¹

Updates in the "Observation" Analysis

Source of uncertainty		σ_{μ}	Source of uncertainty		σ_{μ}	_		
Total		0.39	Total		0.259	_		
Statistical		0.24	Statistical	0.161				
Systematic		0.31	Systematic		0.203			
Experimenta	al uncertainties		Experimenta	l uncertainties				
Jets		0.03	Jets		0.035			
$E_{\mathrm{T}}^{\mathrm{miss}}$		0.03	$E_{\mathrm{T}}^{\mathrm{miss}}$		0.014			
Leptons		0.01	Leptons		0.009			
	b-jets	0.09		b-jets	0.061			
b-tagging	c-jets	0.04	b-tagging	c-jets	0.042			
	light jets	0.04		light jets	0.009	L		
	extrapolation	0.01		extrapolation	0.008			
Pileun		0.01	Pileun		0.007			
I ne-up		0.01	I ne-up Luminosity	0.007				
Theoretical	and modelling up		Luminosity 0.023					
Theoretical a	and modening und		Theoretical a					
Signal		0.17	Signal		0.094			
Floating nor	malisations	0.07	Floating nor	malisations	0.035			
Z + jets		0.07	Z + jets		0.055			
W + jets		0.07	W + jets		0.060			
$tar{t}$		0.07	$t\bar{t}$		0.050			
Single top qu	uark	0.08	Single top qu	ıark	0.028			
Diboson		0.02	Diboson		0.054			
Multi-jet		0.02	Multi-jet		0.005			
MC statistic	al	0.13	MC statistic	0.070				
						_		

Main updates from "evidence":

- ► More data: 80 fb⁻¹ vs. 36 fb⁻¹
- Larger MC samples
- Improved reconstruction algorithms
- Better evaluation of systematic uncertainties

Lead to a more accurate measurement

Uncertainty	Reduction [%]
Signal Modelling	45
Bkg. Modelling	max 65
b-tagging (b-jets)	32
MC stat.	46
Systematics	35
Statistical	33
Total	34

"Evidence" Analysis

"Observation" Analysis

VH, $H \rightarrow b\overline{b}$ results with 80 fb⁻¹

Signal strength
$\mu_{\rm WH} = 1.08^{+0.27}_{-0.27} (\text{stat.})^{+0.38}_{-0.34} (\text{syst.})$
$\mu_{\rm ZH} = 1.20^{+0.23}_{-0.23} (\text{stat.})^{+0.23}_{-0.20} (\text{syst.})$
$\mu_{\rm VH} = 1.16^{+0.16}_{-0.16} (\text{stat.})^{+0.21}_{-0.19} (\text{syst.})$

Expected significance: 4.3 σ

Observed significance: 4.9 σ

Combination with Run-1 Analysis: (correlate signal theory and b-jets)

- Expected significance: 5.1 σ
- Observed significance: 4.9 σ

$$\begin{split} \mu_{\rm WH} &= 1.08^{+0.24}_{-0.23}({\rm stat.})^{+0.29}_{-0.27}({\rm syst.}) \\ \mu_{\rm ZH} &= 0.92^{+0.21}_{-0.20}({\rm stat.})^{+0.19}_{-0.17}({\rm syst.}) \\ \mu_{\rm VH} &= 0.98^{+0.14}_{-0.14}({\rm stat.})^{+0.17}_{-0.16}({\rm syst.}) \end{split}$$

Observation of $H \rightarrow b\overline{b}$ decay and VH production

Observation of $H \rightarrow b\overline{b}$ decay by CMS

- Main differences from ATLAS analysis
 - SR and CR divided by the m_{jj}
 - ▶ 0L SR 60 < m_{jj} <160 GeV</p>
 - ► 1/2L SR 90 < m_{jj} <150 GeV</p>
 - Deep Neural Network (DNN) used
 - SR: score as the fit variable
 - CR: multiclassifier defines the background categories

PRL 121 (2018) 121801

• H \rightarrow bb̄ observed by CMS

Outline

- Standard Model (SM) Higgs Boson
 - Search for $H \rightarrow b\overline{b}$ at colliders
 - LHC and ATLAS
- Search for VH, $H \rightarrow b\overline{b}$ production with ATLAS data
 - Evidence of VH, $H \rightarrow b\overline{b}$ production with 36 fb⁻¹ JHEP 12 (2017) 024
 - Observation of H \rightarrow bb decays and VH production with 80 fb⁻¹

PLB 786 (2018) 59

- Future prospects
 - VH simplified template cross section (STXS) measurement

submitted to JHEP arXiv:1903.04618

VH stage-1 STXS measurement with $H \rightarrow b\overline{b}$

- Template XS instead of inclusive signal strength
 - Same analysis strategy:
 - Classification for the events
 - Same discriminant variables for fit
 - Signal theory uncertainties re-evaluated
- Two templates defined:
 - ► 3 XS denoted as 3-POI in the following
 - ► **5 XS** denoted as **5-POI** in the following

Expected signal yield in each SR

- XS for template bins predicted by SM
- Signal with different p_T^V survived mainly in the corresponding p_T^{V,r} region
- Small migration with p_T^V to p_T^{V,r} due to the resolution
- ▶ p_T^v 150-250 and >250 survived in the same region p_T^{v,r} >150
 - Separated by BDT classifier
 (p_T^{V,r} used in training)

Measurement of 5XS

- Theory prediction uncertainty on XS of measure bins removed
- Systematics from high-granularity regions merged to 5-POI
- 5-POI (each XS normalised to SM prediction) simultaneous measured

$(y_H < 2.5, H \rightarrow b\bar{b})$	[fb]		[fb]			[fb]		Th. Sig.		Th. Bkg.		E	Exp.	
$W \rightarrow l\nu, 150 < p_{\rm T}^V < 250 \text{ GeV}$	24.00	±	1.06	19.9	±	25.0	±	17.3	±	1.6	±	13.2	±	9.4
$W \rightarrow l\nu, p_{\rm T}^V > 250 { m ~GeV}$	7.08	±	0.34	8.8	±	5.2	±	4.4	±	0.5	±	2.5	±	0.9
$Z \rightarrow ll, \nu\nu, 75 < p_{\rm T}^V < 150 \text{ GeV}$	50.61	±	4.09	80.5	±	45.2	±	34.7	±	10.1	±	20.8	±	19.3
$Z \rightarrow ll, \nu\nu, 150 < p_{\rm T}^V < 250 \text{ GeV}$	18.80	±	2.37	13.7	±	12.7	±	10.6	±	1.4	±	6.1	±	3.3
$Z \rightarrow ll, \nu\nu, p_{\rm T}^V > 250 { m ~GeV}$	4.85	±	0.50	8.5	±	4.0	±	3.7	±	0.8	±	1.2	±	0.6

Most of measurement limited by statistics

Measurement of 3XS

No strong correlation observed

Measurement region	SM p	ction	Result			Sta	t. Unc.		S	yst. Unc. [fb]				
$(y_H < 2.5, H \rightarrow b\bar{b})$	[fb]			[fb]			[fb]		Th. Sig.		Th. Bkg.		Exp.	
$W \rightarrow l\nu, p_{\rm T}^V > 150 { m ~GeV}$	31.08	±	1.37	34.5	±	14.0	±	9.2	±	1.8	±	8.5	±	4.3
$Z \rightarrow ll, \nu\nu, 75 < p_{\rm T}^V < 150 {\rm GeV}$	50.61	±	4.09	80.5	±	45.0	±	34.5	±	10.0	±	20.9	±	19.2
$Z \rightarrow ll, \nu\nu, p_{\rm T}^V > 150 {\rm GeV}$	23.65	±	2.97	28.4	±	8.1	±	6.4	±	2.4	±	3.6	±	2.3

EFT interpretation

- Beyond Standard Model (BSM) prediction constrained by the STXS measurement
- Effective Field Theory (EFT) parametrising the effects from BSM $\mathcal{L}_{EFT} = \mathcal{L}_{SM} + \sum_{i} c_i^{(6)} O_i^{(6)} / \Lambda^2$
- Leading effect on BSM from Dimension 6 operators
- Focus on four operators affecting Higgs interaction with W (O_{HW}, O_W) and Z (all four) $O_{HW} = i \left(D^{\mu} H \right)^{\dagger} \sigma^{a} \left(D^{\nu} H \right) W^{a}_{\mu\nu},$ Dimonsionloss coofficients

$$O_{HB} = i (D^{\mu}H)^{\dagger} (D^{\nu}H) B_{\mu\nu},$$

$$O_{W} = \frac{i}{2} \left(H^{\dagger} \sigma^{a} \overrightarrow{D^{\mu}} H \right) D^{\nu} W_{\mu\nu}^{a},$$

$$CHW = \frac{m_{W}^{2}}{g} \frac{c_{HW}}{\Lambda^{2}}, \quad CHB = \frac{m_{W}^{2}}{g'} \frac{c_{HB}}{\Lambda^{2}}, \quad CWW = \frac{m_{W}^{2}}{g} \frac{c_{W}}{\Lambda^{2}}, \quad CB = \frac{m_{W}^{2}}{g} \frac{c_{W}}{\Lambda^{2}}, \quad CWW = \frac{m_{W}^{2}}{g} \frac{c_{W}}{\Lambda^{2}}, \quad CB = \frac{i}{2} \left(H^{\dagger} \overrightarrow{D^{\mu}} H \right) D^{\nu} B_{\mu\nu},$$

- The impact on the XS include
 - Interference between SM and BSM (linear terms)
 - BSM only (quadratic terms)
- Relationship between 5 XS and coefficients

Cross section region	$\sum_i A_i \bar{c_i}$
$q\bar{q} \rightarrow H l \nu \ (150 \le p_{\mathrm{T}}^V \le 250) \ \mathrm{GeV}$	50cHW + 74cWW
$q\bar{q} \rightarrow H l \nu (p_{\rm T}^V \ge 250) {\rm GeV}$	170cHW + 200cWW
$q\bar{q} \rightarrow Hll \ (75 \le p_{\mathrm{T}}^V \le 150) \ \mathrm{GeV}$	13сHW + 38сWW + 3.9сHB + 10.5сВ
$q\bar{q} \rightarrow Hll \ (150 \le p_{\mathrm{T}}^V \le 250) \ \mathrm{GeV}$	37сНW + 61сWW + 11сНВ + 18сВ
$q\bar{q} \rightarrow Hll \ (p_{\rm T}^V \ge 250) \ {\rm GeV}$	130сНѠ + 150сѠѠ + 38сНВ + 46сВ

$$\frac{\sigma_{EFT}}{\sigma_{SM}} = 1 + \sum_{i} A_i \bar{c_i} + \sum_{ij} B_{ij} \bar{c_i} \bar{c_j}$$

Cross section region	$\sum_{ij} B_{ij} \bar{c}_i \bar{c}_j$
$q\bar{q} \rightarrow Hl\nu \ (150 \le p_{\rm T}^V \le 250) \ { m GeV}$	$839 \text{cHW}^2 + 1555 \text{cWW}^2 + \text{cHW}(900 \text{cWW})$
$q\bar{q} \rightarrow Hl\nu \ (p_{\rm T}^V \ge 250) \ {\rm GeV}$	$14000 \text{ cHW}^2 + 16000 \text{ cWW}^2 + \text{ cHW}(30000 \text{ cWW})$
$q\bar{q} \rightarrow Hll \ (75 \le p_{\mathrm{T}}^V \le 150) \ \mathrm{GeV}$	85 cHW ² + 400 cWW ² + 8 cHB ² + 35 cB ²
	+cHW(150cWW + 20cHB + 42cB)
	+cHB(44cWW + 12cB) + cWW(140cB)
$q\bar{q} \rightarrow Hll \; (150 \le p_{\mathrm{T}}^V \le 250) \; \mathrm{GeV}$	462cHW ² + 982cWW ² + 41cHB ² + 86cB ²
	+cHW(1255cWW + 277cHB + 358cB)
	+cHB(373cWW + 105cB) + cWW(587cB)
$q\bar{q} \rightarrow Hll \ (p_{\rm T}^V \ge 250) \ {\rm GeV}$	$8000 \text{ cHW}^2 + 9600 \text{ cWW}^2 + 720 \text{ cHB}^2 + 850 \text{ cB}^2$
	+cHW(17000cWW + 4800cHB + 5100cB)
	+cHB(5100cWW + 1500cB) + cWW(5700cB)

"Higgs Effective Lagrangian" implementation

5-POI → coefficients

- Strong constrain on S = cWW + cB from precise electroweak data, S assumed as 0
- Thus constrain set on the coefficients: cHW, cHB, cWW-cB
- 5-POI parametrised with the above coefficients in linear and quadrature terms
- Maximum likelihood fits with POIs as cHW, cHB, cWW-cB
- One-dimensional fit performed

Constrains on coefficients

Coefficient	Expected interval	Observed interval			
Results at 68% confidence level					
\bar{c}_{HW}	[-0.003, 0.002]	[-0.001, 0.004]			
(interference only	[-0.002, 0.003]	[-0.001, 0.005])			
\bar{c}_{HB}	[-0.066, 0.013]	$[-0.078, -0.055] \cup [0.005, 0.019]$			
(interference only	[-0.016, 0.016]	[-0.005, 0.030])			
$\bar{c}_W - \bar{c}_B$	[-0.006, 0.005]	[-0.002, 0.007]			
(interference only	[-0.005, 0.005]	[-0.002, 0.008])			
\overline{c}_d	[-1.5, 0.3]	$[-1.6, -0.9] \cup [-0.3, 0.4]$			
(interference only	[-0.4, 0.4]	[-0.2, 0.7])			
	Results at 95% co	onfidence level			
\bar{c}_{HW}	[-0.018, 0.004]	$[-0.019, -0.010] \cup [-0.005, 0.006]$			
(interference only	[-0.005, 0.005]	[-0.003, 0.008])			
\bar{c}_{HB}	[-0.078, 0.024]	[-0.090, 0.032]			
(interference only	[-0.033, 0.033]	[-0.022, 0.049])			
$\bar{c}_W - \bar{c}_B$	[-0.034, 0.008]	$[-0.036, -0.024] \cup [-0.009, 0.010]$			
(interference only	[-0.009, 0.010]	[-0.006, 0.014])			
\bar{c}_d	[-1.7, 0.5]	[-1.9, 0.7]			
(interference only	[-0.8, 0.8]	[-0.6, 1.1])			

- ► The 68% and 95% confidence level intervals obtained from 1-D scan
- Currently, no results to have a fair comparison with

Conclusion

- Standard Model (SM) Higgs Boson
 - Search for $H \rightarrow b\overline{b}$ at colliders
 - LHC and ATLAS
- Search for VH, $H \rightarrow b\overline{b}$ production with ATLAS data
 - Evidence of VH, $H \rightarrow b\overline{b}$ production with 36 fb⁻¹ JHEP 12 (2017) 024
 - Observation of $H \rightarrow b\overline{b}$ decays and VH production with 80 fb⁻¹

PLB 786 (2018) 59

- Future prospects
 - VH simplified template cross section (STXS) measurement

Standard Model (SM) of particle physics

Standard Model of Elementary Particles

A renormalisable quantum field theory based on the local gauge invariance under the SU(3)xSU(2)xU(1) group

- Matter is made of fermions (spin 1/2)
 - ► quarks
 - ► leptons
- Forces are carried by the gauge bosons (spin 1)
- The Higgs boson is responsible for the particle masses

Higgs boson theory

- Explicit mass terms of fermions and bosons in the SM Lagrangian are not gauge invariant
- Introducing in the Lagrangian a scalar field with non trivial vacuum can solve this problem:

field
$$\phi = \frac{1}{\sqrt{2}} \begin{pmatrix} \phi^+ \\ \phi^0 \end{pmatrix}$$
 potential $V(\phi) = \mu^2 \phi^{\dagger} \phi + \lambda (\phi^{\dagger} \phi)^2$.

v = vacuum expectation value of field ϕ

After spontaneous symmetry breaking, vector bosons acquire masses

$$\begin{array}{c} \begin{array}{c} \frac{1}{2}\partial_{\mu}H\partial^{\mu}H + \mu^{2}H^{2} - \lambda vH^{3} - \frac{\lambda}{4}H^{4} \\ + \frac{g^{2}v^{2}}{4}W_{\mu}^{+}W^{-\mu} + \frac{1}{2}\frac{(g^{2} + g'^{2})v^{2}}{4}Z_{\mu}Z^{\mu} \\ + \frac{g^{2}v}{2}W_{\mu}^{+}W^{-\mu}H + \frac{1}{2}\frac{(g^{2} + g'^{2})v}{2}Z_{\mu}Z^{\mu}H \\ + \frac{g^{2}}{4}W_{\mu}^{+}W^{-\mu}H^{2} + \frac{1}{2}\frac{g^{2} + g'^{2}}{4}Z_{\mu}Z^{\mu}H^{2}. \end{array} \end{array} \xrightarrow{ \begin{array}{c} \end{array} } \begin{array}{c} \end{array}$$

Gauge invariant and renormalisable Yukawa extra terms

 $\mathcal{L}_{\text{Yukawa}} = y_{\alpha\beta}^{l} \bar{L}_{\alpha} l_{\beta} H + y_{\alpha\beta}^{d} \bar{Q}_{\alpha} D_{\beta} H + y_{\alpha\beta}^{u} \bar{Q}_{\alpha} U_{\beta} \tilde{H} + \text{hermitian conjugate}$ give rise to fermion mass terms as well fermion-Higgs couplings

ocal maxima

Low Energy Assymetric

Local minimu

Signal background generators

Process	ME generator	ME PDF	PS and	UE model	Cross-section
			Hadronisation	tune	order
Signal					
$qq \rightarrow WH$	Powheg-Box v2 $[38] +$	NNPDF3.0NLO ^(\star) [39]	Рутніа8.212 [<mark>32</mark>]	AZNLO $[40]$	NNLO(QCD)+
$\rightarrow \ell \nu b \overline{b}$	GoSam $[41]$ + MiNLO $[42, 43]$				$\mathrm{NLO(EW)}~[4450]$
$qq \rightarrow ZH$	Powheg-Box $v2 +$	$NNPDF3.0NLO^{(\star)}$	Pythia8.212	AZNLO	$\rm NNLO(QCD)^{(\dagger)} +$
$\rightarrow \nu \nu b \bar{b} / \ell \ell b \bar{b}$	GOSAM + MINLO				NLO(EW)
$gg \rightarrow ZH$	Powheg-Box v2	$NNPDF3.0NLO^{(\star)}$	Pythia8.212	AZNLO	NLO+
$ ightarrow u u b \overline{b} / \ell \ell b \overline{b}$					NLL $[51-55]$
Top quark					
$t\bar{t}$	Powheg-Box v2 [56]	NNPDF3.0NLO	Pythia8.212	A14 [57]	NNLO+NNLL [58]
s-channel	Powheg-Box v1 [59]	CT10 [60]	Pythia6.428 [61]	P2012 [62]	NLO [63]
t-channel	Powheg-Box v1 [59]	CT10f4	Pythia6.428	P2012	NLO [64]
Wt	Powheg-Box v1 [65]	CT10	Pythia6.428	P2012	NLO [66]
Vector boson + j	ets				
$W \to \ell \nu$	Sherpa 2.2.1 [35, 67, 68]	NNPDF3.0NNLO	Sherpa 2.2.1 [69, 70]	Default	NNLO [71]
$Z/\gamma^* \to \ell\ell$	Sherpa 2.2.1	NNPDF3.0NNLO	Sherpa 2.2.1	Default	NNLO
$Z \rightarrow \nu \nu$	Sherpa 2.2.1	NNPDF3.0NNLO	Sherpa 2.2.1	Default	NNLO
Diboson					
WW	Sherpa 2.1.1	CT10	Sherpa 2.1.1	Default	NLO
WZ	Sherpa 2.2.1	NNPDF3.0NNLO	Sherpa 2.2.1	Default	NLO
ZZ	Sherpa 2.2.1	NNPDF3.0NNLO	Sherpa 2.2.1	Default	NLO

Table 1. The generators used for the simulation of the signal and background processes. If not specified, the order of the cross-section calculation refers to the expansion in the strong coupling constant (α_S). The acronyms ME, PS and UE stand for matrix element, parton shower and underlying event, respectively. (\star) The events were generated using the first PDF in the NNPDF3.0NLO set and subsequently reweighted to PDF4LHC15NLO set [37] using the internal algorithm in POWHEG-BOX v2. (\dagger) The NNLO(QCD)+NLO(EW) cross-section calculation for the $pp \rightarrow ZH$ process already includes the $gg \rightarrow ZH$ contribution. The $qq \rightarrow ZH$ process is normalised using the NNLO(QCD)+NLO(EW) cross-section for the $pp \rightarrow ZH$ process, after subtracting the $gg \rightarrow ZH$ contribution.

Post fit plots for CMS VHbb

Backup STXS

Simplified Template Cross Section (STXS)

- XS for Higgs boson production measured in template bins
 - Defined with kinematic properties of the Higgs boson production
 - Maximising the experimental sensitivity
 - Minimizing the dependence on the theory uncertainties
 - The region with high sensitivity to BSM isolated

Simplified Template Cross Section (STXS)

Theory Systematics

- The systematics kept same as "ICHEP" VH, H → bb analysis except the signal systematics
- The signal systematics re-evaluated for:
 - Factorisation and renormalisation QCD scale uncertainties
 - PDF and alphaS variations
 - PS and UE uncertainties
 - The scheme decided from the interaction with theorist
 - Details openly discussed in a <u>PUB</u> <u>note</u> (LHCHiggsXS WG)
- Evaluated for the high-granularity regions to have the best flexibility (for need in future)
- Merged into 3-POI or 5-POI template bins for the practical measurement

ATL-PHYS-PUB-2018-035

QCD scale uncertainties

- Uncertainty for the missing higher-order terms in the QCD perturbative expansion
- ICHEP inclusive measurement accounts the overall impact on XS
- Besides the overall impact, the migration effects should be considered for STXS template
- \blacktriangleright Varying (μ_{R} , μ_{F}) to evaluate
 - ► maximum relative uncertainties ($\delta[p_T^V,\infty]$) on $y[p_T^V,\infty]$
 - ► maximum relative uncertainties on the XS for the jet multiplicity bin in each p_T^V bin

Parametrisation of the QCD impact on migration

- Performed following the <u>StewartTackmann method</u>
- Parametrisation (Δ) accounts for the migration across $p_T{}^V$
- Opposite impact of Δ for on signal below / above p_T^V boundary

	sum	$\sigma_{0,75}$	$\sigma_{75,150}$	$\sigma_{150,250}$	$\sigma_{250,400}$	$\sigma_{400,\infty}$
Overall	overall XS unc.	+				
Δ_{75}	0	- +				
Δ_{150}	0	- +				
Δ_{250}	0	- +				
Δ_{400}	0	- +			+	

- Performed from low p_T^V boundary to high boundary
- Effect from lower subtracted ($\delta_{[150,\infty]}$ already covered by $\delta_{[75,\infty]}$)
 - otherwise overestimation exists
 - subtract by multiplying a correction factor (K = 0.5)

$$\Delta_{75} = y_{[75,\infty]} \times \delta_{[75,\infty]}$$

$$\Delta_{150} = y_{[150,\infty]} \times \delta_{[150,\infty]} \times K$$

$$\Delta_{250} = y_{[250,\infty]} \times \delta_{[250,\infty]} \times K$$

$$\Delta_{400} = y_{[400,\infty]} \times \delta_{[400,\infty]} \times K$$

Migration impact in each p_T^V bin

p_T^V bin [GeV]	Δ ₇₅	Δ_{150}	Δ_{250}	Δ_{400}
ρ ^V _T [0, 75[$-\Delta_{75}/\sigma_{[0,75]}$	- $\Delta_{150}/\sigma_{[0,150[}$	$-\Delta_{250}/\sigma_{[0,250[}$	$-\Delta_{400}/\sigma_{[0,400[}$
p ^V _T [75, 150[$+\Delta_{75}/\sigma_{[75,\infty[}$	- $\Delta_{150}/\sigma_{[0,150]}$	- $\Delta_{250}/\sigma_{[0,250[}$	$-\Delta_{400}/\sigma_{[0,400[}$
p_T^V [150, 250[$+\Delta_{75}/\sigma_{[75,\infty[}$	$+\Delta_{150}/\sigma_{[150,\infty[}$	- $\Delta_{250}/\sigma_{[0,250]}$	$-\Delta_{400}/\sigma_{[0,400[}$
p ^V _T [250, 400[$+\Delta_{75}/\sigma_{[75,\infty[}$	$+\Delta_{150}/\sigma_{[150,\infty[}$	$+\Delta_{250}/\sigma_{[250,\infty[}$	$-\Delta_{400}/\sigma_{[0,400]}$
p_T^V [400, ∞ [$+\Delta_{75}/\sigma_{[75,\infty[}$	$+\Delta_{150}/\sigma_{[150,\infty[}$	$+\Delta_{250}/\sigma_{[250,\infty[}$	$+\Delta_{400}/\sigma_{[400,\infty[}$

p ^V _T bin [GeV] │	Δ_{75}	Δ_{150}	Δ_{250}	Δ_{400}
ρ ^V _T [0, 75[$-\Delta_{75}/\sigma_{[0,75[}$	0	0	0
p_T^V [75, 150[$+\Delta_{75}/\sigma_{[75,\infty[}$	- $\Delta_{150}/\sigma_{[75,150]}$	0	0
p_T^V [150, 250[$+\Delta_{75}/\sigma_{[75,\infty[}$	$+\Delta_{150}/\sigma_{[150,\infty[}$	- $\Delta_{250}/\sigma_{\text{[150,250]}}$	0
p ^V _T [250, 400[$+\Delta_{75}/\sigma_{[75,\infty[}$	$+\Delta_{150}/\sigma_{[150,\infty[}$	$+\Delta_{250}/\sigma_{[250,\infty[}$	$-\Delta_{400}/\sigma_{[250,400[}$
p_T^V [400, ∞ [$+\Delta_{75}/\sigma_{[75,\infty[}$	$+\Delta_{150}/\sigma_{[150,\infty[}$	$+\Delta_{250}/\sigma_{[250,\infty[}$	$+\Delta_{400}/\sigma_{[400,\infty[}$

Two schemes for implementation of impact from $\boldsymbol{\Delta}$

- Impact on relative uncertainty on σ (XS) above p_T^v boundary anti-correlated with:
 - all σ below p_T^V boundary (scheme-1, used for circulation)
 - ► bin of p_T^V just lower than the boundary (scheme-2)
- Tiny difference on the results between two schemes (<u>Milene's talk</u>)

Agreed upon to change to scheme-2 during circulation

PDF and alphaS variation

- Uncertainties from the choice of the PDF and alphaS
- ICHEP inclusive measurement: 30 PDF4LHC15 + 2 alphaS weight variation enveloped
 STXS:
 - each of 30 PDF variations as an individual uncertainty
 - one uncertainty accounts for the alphaS
 - ► 31 uncertainties evaluated in each of high-granularity regions
 - The impacts are small (< 2% for qqWH)</p>

Parton Shower / Underlying Events uncertainty

Inclusive measurement in ICHEP

- STXS:
 - Individual uncertainties for 4 Pythia-8 AZNLO tunes
 - one dedicated uncertainty for the difference between Pythia-8 and Herwig-7
 - uncertainty on the acceptance evaluated in each STXS bin
 - fully correlated across all STXS bins

	1L: $WH \rightarrow \ell \nu b\bar{b}$			
Tune variation	2j	3j	2/3j	
Ren	0.27%	0.32%	0.05%	
MPI	-0.42%	-0.24%	0.18%	
Var1	0.06%	-0.25%	-0.31%	
Var2	0.17%	0.11%	-0.05%	
Tot PStune	0.53%	0.49%	0.37%	
Herwig7	2.90%	1.21%	-1.64%	
Tot PS/UE	2.95%	1.30%	1.68%	

- Stewart-Tackman like in ICHEP:
 - overall acceptance uncertainty
 - 2/3j acceptance ratio as the migration effect

