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• Standard Model (SM) Higgs Boson


• Search for H → bb̅ at colliders


• LHC and ATLAS


• Search for VH, H → bb̅ production with ATLAS data


• Evidence of VH, H → bb̅ production with 36 fb-1


• Observation of H → bb̅ decays and VH production with 80 fb-1


• Future prospects


• VH simplified template cross section (STXS) measurement
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Higgs boson phenomenology at the LHC
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‣ ZZ, γγ: small BR, high resolution, good S/B

‣ WW: large BR, poor resolution

‣ μμ: very small BR, access to coupling to 2nd 

generation fermions

‣ tt: forbidden (but Htt coupling can be studied 

with ttH production)

‣ bb, ττ: large BR, poor resolution, low S/B, 

probe couplings to 3rd generation fermions
‣ at 13 TeV: σtot ~ 56 pb, σVH ~ 2.2 pb
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 H (N3LO QCD + NLO EW)

→pp 

 qqH (NNLO QCD + NLO EW)

→pp 

 WH (NNLO QCD + NLO EW)

→pp 
 ZH (NNLO QCD + NLO EW)

→pp 

 ttH (NLO QCD + NLO EW)

→pp 

 bbH (NNLO QCD in 5FS, NLO QCD in 4FS)

→pp 

 tH (NLO QCD, t-ch + s-ch)

→pp 

Production Decay



‣ Higgs boson was discovered in 2012 by ATLAS and CMS from the 
combination of the decays to

‣ H → γγ

‣ H → ZZ*

‣ H → WW*


‣ Run-1 measurements:

‣mass = 125.09 ± 0.24 GeV

‣ Properties in agreement with SM predictions for mH~125 GeV


‣ Spin-0, CP-even

‣ SM-like couplings

Higgs boson discovery and measurements in Run-1
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Phys. Lett. B716 (2012) 1
Phys. Lett. B716 (2012) 30

Phys. Rev. Lett. 114, 191803 (2015)

Eur. Phys. J. C 75 (2015) 476
JHEP 08 (2016) 045
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Recent results from ATLAS Run-2 data
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‣ Several production and decay modes measured with 36-80 fb-1 of 13 TeV data

‣ Good agreement with SM for 


‣ global signal strength µ (= measured σ*BR / SM prediction)

‣ ratios of cross sections of various production modes

‣ ratios of branching ratios to different decay modes

‣ couplings

ATLAS-CONF-2018-031

b?



Searches for H→bb̅ at hadron colliders
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‣ Largest cross section


‣ Huge multi-jet (MJ) background


‣ Two forward jets 


‣ Large MJ


‣ Leptonic signature


‣ Better triggering


‣ Better MJ suppression


‣ Leptonic signature


‣ Also top quark coupling
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VH, H→bb̅: previous results (before Run-2)
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‣ Before LHC Run-2, no observation of VH, H → bb̅

‣ Identification of b-jet is crucial from Run-1 experience

‣ Efficiency plays a key role in sensitivity

‣ Large impact on relative uncertainty on μ (13% in ATLAS Run-1)

c



Large Hadron Collider @ CERN
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‣ Most powerful pp and heavy ion 
accelerator and collider


‣ Two main multi-purpose 
experiments (ATLAS, CMS) out of 
several experiments

‣ test SM and search for new 

phenomena at the ~TeV scale

Beam condition 
pp collision Design Run-1 

(2011-2012)
Run-2 

(2015-2018)
Beam energy 

[GeV] 7.0 3.5~4.0 6.5

Bunching space 
[ns] 25 50 25

Max peak luminosity 
[1034 cm-2 s-1] 1.0 0.36~0.77 0.47~2.14



ATLAS Experiment @ LHC
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Inner detector:


‣ charged particle tracks

EM calorimeter:


‣ e/γ energy/direction

Hadronic calorimeter:


‣ hadron energy/direction

Muon spectrometer:


‣ Muon tracks

2T0.5-1T

General-purpose, ~ 4π detector for multi-TeV pp collisions



Object reconstruction in ATLAS
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‣ Weakly interacting particles 
→ transverse momentum 
imbalance (MET)


‣ use calibrated identified 
particles + “soft term” 
from unassociated 
charged particle tracks

‣ Hadrons are clustered → jets

‣ Anti-kt clustering 

algorithm (R=0.4)

‣ MC-based calibration + 

in-situ correction (Z+jet, 
γ+jet, multijets)
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b-jet identification in ATLAS
‣ b-jets: jets containing b hadrons

‣ Identification (“tagging”) of b-jets fundamental for:


‣ Precision measurements in the top quark sector

‣ Higgs boson decays to b quarks

‣ New phenomena producing b quarks


‣ Three basic algorithms exploiting long lifetime of b-hadrons:

‣ Tracks with large impact parameters (IP)

‣ Inclusive secondary vertices (SV)

‣ Eventual tertiary vertices


‣ Output combined into Boosted Decisions Tree (BDT): MV2

MV2



Outline
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• Standard Model (SM) Higgs Boson


• Search for H → bb̅ at colliders


• LHC and ATLAS


• Search for VH, H → bb̅ production with ATLAS data


• Evidence of VH, H → bb̅ production with 36 fb-1


• Observation of H → bb̅ decays and VH production with 80 fb-1


• Future prospects


• VH simplified template cross section (STXS) measurement
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VH, H→bb̅ search with ATLAS Run-2 data

data 2015-2016: 36 fb-1

data 2015-2017: 80 fb-1



 14

Simulated event samples
‣ State-of-the-art NLO Monte Carlo generators normalised to higher-order calculations for the 

description of all backgrounds (except for multi-jet that is data-driven) and signals

Main background 

processes:


‣Top-quark production 
‣Z+jets (heavy-flavours) 
‣W+jets (heavy-flavours) 
‣Diboson

Signal

Background
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Signal signature and basic selection

0-lepton 1-lepton 2-lepton

V→leptons 
‣ 1 or 2 isolated charged leptons (W→lv, Z→ll) and/or 

large MET (Z→νν, W→µν)

‣ also useful for triggering purposes

‣ Z→ll: same flavour, mll~mZ


‣ Channels denoted by the number of reconstructed charged leptons (e or μ)

H → bb̅ 
‣ 2 high-pT b-jets, not from pile-up, b-tagged

‣ Kinematic properties consistent with VH production, 

e.g. mbb~125 GeV

‣ H (→ bb̅) recoiling against V (→leptons)
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Specific selection vs lepton channel

‣ Additional selection criteria to suppress processes hard to model and estimate: QCD multi-jet

‣ Take the 0-lepton as an example

Variable Selection
MET >150 GeV

HT = Σ pT jets >120 GeV for 2-jet events 

>150 GeV for 3-jet events

Δϕ(ETmiss,pTmiss) < 90°
Δϕ(b,b) < 140°

Δϕ(ETmiss,bb) > 120°

min[Δϕ(ETmiss,jet)] > 20° for 2-jet events

> 30° for 3-jet events

‣ HT cut to avoid trigger turn-on mis-modelling

‣ Angular cuts to reject QCD multi-jet
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‣ Control regions (CR) to constrain main backgrounds:


‣ Event categories with different S/B to increase sensitivity: 
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Control regions and event categories

2-jet

3-jet 

(≥3-jet for 2lepton)

75 < pTV < 150 GeV 

(only for 2-lepton)

150 GeV <pTV

⊗
signal region (SR)

W+HF CR (1-lepton)

tt̄ eμ CR (2-lepton)

⊗

2 bins in 

jet multiplicity

2 regions in V transverse 

momentum (pTV)

W+HF CR

1-lepton selection, mbb̅ < 75 GeV, mtop > 225 GeV


 Purity 75~80%

tt̄ eμ CR

2-lepton selection but require eμ final state


Purity > 99%
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The analysis strategy: Multivariate approach
‣ Final S/B discrimination from fit to score of BDT combining several input variables


‣ Start from a minimal set of variables with largest S/B separation [mbb, ΔRbb]


‣ Test additional variables one-by-one, keep variable providing maximum sensitivity 


‣ Iterate the procedure until the sensitivity improvement is negligible


‣ Separate training for lepton/pTV/Njet regions



‣ Combined Likelihood fit is built across channels and multiple analysis regions


‣ Each bin contributes with a Poisson term
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The Fit Model

Nuisance parameters (NPs) 𝜭:

‣ Uncertainties from performance:


‣ Lepton / Jet / MET / b-tagging

‣ Parametrized shapes and relative 

normalisations across regions

Parameter of interest
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Cross-checks

‣ VZ, Z → bb̅ same final states as VH, H → bb̅

‣ Same analysis, but with VZ, Z → bb̅ as signal

‣ BDT re-trained with VZ as signal (BDTVZ) 
‣ Fit BDTVZ  distribution to extract µVZ

Diboson cross-check Dijet mass cross-check

‣ VH, H → bb̅ as the signal

‣ Fit mbb  distribution instead of BDTVH

‣ Additional selections to compensate for 

sensitivity loss due to simpler fit discriminant
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Cross-checks: Results with 36 fb-1
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‣ Signal strength

‣ Expected significance: 5.3σ 

‣ Observed significance: 5.8σ

‣ Expected significance: 2.8σ 

‣ Observed significance: 3.5σ

‣ Signal strength

VZ, Z → bb̅ VH, H → bb̅ 
Dijet mass
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Impact of systematic uncertainties on µVH

‣ Dominant effects:


‣ Signal Modelling


‣ Background Modelling 


‣W+jet


‣ Single top Wt


‣ Z+jets


‣ tt̄


‣ b-tagging calibration


‣ Limited Monte Carlo statistics
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VH, H → bb̅ results with 36 fb-1

‣ Expected significance: 3.0σ 

‣ Observed significance: 3.5σ

2 signal strengths ( µ WH, µ ZH ) and 
the inclusive signal strength µ VH
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Updates in the “Observation” Analysis
‣Main updates from “evidence”:


‣More data: 80 fb-1 vs. 36 fb-1

‣ Larger MC samples

‣ Improved reconstruction  

algorithms

‣ Better evaluation of  

systematic uncertainties

“Evidence” Analysis “Observation” Analysis

Lead to a more accurate measurement 

Uncertainty Reduction 
[%]

Signal Modelling 45
Bkg. Modelling max 65

b-tagging (b-jets) 32
MC stat. 46

Systematics 35
Statistical 33

Total 34
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VH, H → bb̅ results with 80 fb-1
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(correlate signal theory and b-jets)
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Observation of H → bb̅ decay and VH production

Combination  
of production modes 

with cross sections

predicted by SM

Combination 
of decay modes 

with branching ratios 

predicted by SM

‣ Exp. significance = 5.5σ 

‣Obs. significance = 5.4σ

‣ H → bb̅ observed

‣ Exp. significance = 4.8σ 

‣Obs. significance = 5.3σ

‣ VH observed
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Observation of H → bb̅ decay by CMS
PRL 121 (2018) 121801

µBest fit 
0 1 2 3 4 5 6 7 8 9

Combined

ZH
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stat      syst

 0.14± 0.14 ±1.04 
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 1.30± 2.08 ±2.80 

CMS
 (13 TeV)-1 77.2 fb≤ (8 TeV) + -1 19.8 fb≤ (7 TeV) + -1 5.1 fb≤

bb→H

Observed
 syst)⊕ (stat σ1±

 (syst)σ1±

‣ Exp. significance = 5.6σ 

‣ Obs. significance = 5.5σ

‣ H → bb̅ observed by CMS

‣ Main differences from ATLAS analysis

‣ SR and CR divided by the mjj


‣ 0L SR 60 < mjj <160 GeV

‣ 1/2L SR 90 < mjj <150 GeV


‣ Deep Neural Network (DNN) used

‣ SR: score as the fit variable

‣ CR: multiclassifier defines the 

background categories
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• Standard Model (SM) Higgs Boson


• Search for H → bb̅ at colliders


• LHC and ATLAS


• Search for VH, H → bb̅ production with ATLAS data


• Evidence of VH, H → bb̅ production with 36 fb-1


• Observation of H → bb̅ decays and VH production with 80 fb-1


• Future prospects


• VH simplified template cross section (STXS) measurement
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‣ Template XS instead of inclusive signal strength

‣ Same analysis strategy:


‣ Classification for the events

‣ Same discriminant variables for fit


‣ Signal theory uncertainties re-evaluated

‣ Two templates defined:


‣ 3 XS denoted as 3-POI in the following


‣ 5 XS denoted as 5-POI in the following

VH stage-1 STXS measurement with H → bb̅
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‣ XS for template bins predicted by SM

‣ Signal with different pTV survived mainly 

in the corresponding pTV,r region

‣ Small migration with pTV to pTV,r due to 

the resolution

‣ pTV 150-250 and >250 survived in the 

same region pTV,r >150 
‣ Separated by BDT classifier 

( pTV,r used in training )
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Measurement of 5XS
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‣ Theory prediction uncertainty on XS of measure bins removed

‣ Systematics from high-granularity regions merged to 5-POI

‣ 5-POI ( each XS normalised to SM prediction ) simultaneous measured 

Strong anti-correlation

pTV in [150,250] 


pTV > 250

‣ Most of measurement limited by statistics
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Measurement of 3XS
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‣ No strong correlation observed



EFT interpretation
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‣ Beyond Standard Model ( BSM ) prediction constrained by the STXS measurement

‣ Effective Field Theory (EFT) parametrising the effects from BSM

‣ Leading effect on BSM from Dimension 6 operators

‣ Focus on four operators affecting Higgs interaction with W ( OHW, OW ) and Z ( all four )


‣ The impact on the XS include

‣ Interference between SM and BSM ( linear terms )

‣ BSM only ( quadratic terms )


‣ Relationship between 5 XS and coefficients

Dimensionless coefficients

Strongly Interacting Light Higgs formulation
“Higgs Effective Lagrangian” implementation
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5-POI → coefficients

 34

‣ Strong constrain on S = cWW + cB from precise 
electroweak data, S assumed as 0


‣ Thus constrain set on the coefficients: cHW, cHB, 
cWW-cB


‣ 5-POI parametrised with the above coefficients in 
linear and quadrature terms


‣Maximum likelihood fits with POIs as cHW, cHB, 
cWW-cB


‣One-dimensional fit performed 0.025− 0.02− 0.015− 0.01− 0.005− 0 0.005
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Constrains on coefficients
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‣ The 68% and 95% confidence level intervals obtained from 1-D scan

‣ Currently, no results to have a fair comparison with

Coe�cient Expected interval Observed interval

Results at 68% confidence level

c̄HW [�0.003, 0.002] [�0.001, 0.004]

(interference only [�0.002, 0.003] [�0.001, 0.005])

c̄HB [�0.066, 0.013] [�0.078, �0.055]
–

[0.005, 0.019]

(interference only [�0.016, 0.016] [�0.005, 0.030])

c̄W � c̄B [�0.006, 0.005] [�0.002, 0.007]

(interference only [�0.005, 0.005] [�0.002, 0.008])

c̄d [�1.5, 0.3] [�1.6, �0.9]
–

[�0.3, 0.4]

(interference only [�0.4, 0.4] [�0.2, 0.7])

Results at 95% confidence level

c̄HW [�0.018, 0.004] [�0.019,�0.010]
–

[�0.005, 0.006]

(interference only [�0.005, 0.005] [�0.003, 0.008])

c̄HB [�0.078, 0.024] [�0.090, 0.032]

(interference only [�0.033, 0.033] [�0.022, 0.049])

c̄W � c̄B [�0.034, 0.008] [�0.036,�0.024]
–

[�0.009, 0.010]

(interference only [�0.009, 0.010] [�0.006, 0.014])

c̄d [�1.7, 0.5] [�1.9, 0.7]

(interference only [�0.8, 0.8] [�0.6, 1.1])



Conclusion
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• Standard Model (SM) Higgs Boson


• Search for H → bb̅ at colliders


• LHC and ATLAS


• Search for VH, H → bb̅ production with ATLAS data


• Evidence of VH, H → bb̅ production with 36 fb-1


• Observation of H → bb̅ decays and VH production with 80 fb-1


• Future prospects


• VH simplified template cross section (STXS) measurement

JHEP 12 (2017) 024

PLB 786 (2018) 59

submitted to JHEP 
arXiv:1903.04618



Backup
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Standard Model (SM) of particle physics

 38

A renormalisable quantum field 
theory based on the local gauge 
invariance under the 
SU(3)xSU(2)xU(1) group


‣Matter is made of fermions 
(spin 1/2)

‣ quarks

‣ leptons


‣ Forces are carried by the 
gauge bosons (spin 1)


‣ The Higgs boson is 
responsible for the particle 
masses



‣ Explicit mass terms of fermions and bosons in the SM Lagrangian are not gauge invariant

‣ Introducing in the Lagrangian a scalar field with non trivial vacuum can solve this problem:


‣ After spontaneous symmetry breaking, vector bosons acquire masses


‣ Gauge invariant and renormalisable Yukawa extra terms


     give rise to fermion mass terms as well fermion-Higgs couplings

Higgs boson theory

 39

mass terms

field potential

v = vacuum expectation value of field φ



Signal background generators



Post fit plots for CMS VHbb
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Backup 
STXS

 42



‣ XS for Higgs boson production measured in template bins

‣ Defined with kinematic properties of the Higgs boson production

‣Maximising the experimental sensitivity 

‣Minimizing the dependence on the theory uncertainties

‣ The region with high sensitivity to BSM isolated

Simplified Template Cross Section (STXS)

 43

Stage-1 ( for VH )

‣ Further split into 11 regions according to 


‣ Production mode ( qqVH / ggZH )

‣ Number of jets (not from Higgs decay)

‣ pTV


‣ Only |yHiggs| < 2.5 measured (detector acc.)

‣ H → bb̅ decay mode chosen for the sake of 

sensitivity

‣ Thus ICHEP VH, H → bb̅ analysis as a good 

choice as the fundament of the 
measurement

Stage-0

‣ Split by production mode

‣Measured with 36.1 fb-1 of data

ATLAS-CONF-2018-018 ( H → ZZ* → 4 𝓁 ) 
ATLAS-CONF-2018-031 ( H → 𝛾𝛾 )
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Theory Systematics
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‣ The systematics kept same as “ICHEP” VH, 
H → bb̅ analysis except the signal 
systematics


‣ The signal systematics re-evaluated for:


‣ Factorisation and renormalisation QCD 
scale uncertainties


‣ PDF and alphaS variations


‣ PS and UE uncertainties


‣The scheme decided from the 
interaction with theorist 

‣Details openly discussed in a PUB 
note ( LHCHiggsXS WG ) 

‣ Evaluated for the high-granularity regions 
to have the best flexibility (for need in 
future)


‣ Merged into 3-POI or 5-POI template bins 
for the practical measurement

ATL-PHYS-PUB-2018-035

https://cds.cern.ch/record/2646305/files/ATL-COM-PHYS-2018-1530.pdf
https://cds.cern.ch/record/2646305/files/ATL-COM-PHYS-2018-1530.pdf


QCD scale uncertainties
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‣ Uncertainty for the missing higher-order terms in the QCD perturbative expansion

‣ ICHEP inclusive measurement accounts the overall impact on XS

‣ Besides the overall impact, the migration effects should be considered for STXS template

‣ Varying ( µR , µF ) to evaluate


‣maximum relative uncertainties ( δ[pTV,∞] ) on y[pTV,∞]

‣maximum relative uncertainties on the XS for the jet multiplicity bin in each pTV bin

( µR , µF )
prod. 
mode δoverall

WH 0.7 %

qqZH 0.6 %

ggZH 25 %

From the most updated 
computations (YR4)

XS above the pTV boundary 

https://e-publishing.cern.ch/index.php/CYRM/issue/view/32


Parametrisation of the QCD impact on migration
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‣ Performed following the StewartTackmann method


‣ Parametrisation ( Δ ) accounts for the migration across pTV


‣ Opposite impact of Δ for on signal below / above pTV boundary


‣ Performed from low pTV boundary to high boundary


‣ Effect from lower subtracted ( δ[150,∞] already covered by δ[75,∞]  )


‣ otherwise overestimation exists


‣ subtract by multiplying a correction factor ( K = 0.5 )

https://arxiv.org/pdf/1107.2117.pdf


Migration impact in each pTV bin

 48

Two schemes for implementation of impact from Δ

‣ Impact on relative uncertainty on 𝜎 (XS) above pTV boundary anti-correlated with:


‣ all 𝜎 below pTV boundary (scheme-1, used for circulation)

‣ bin of pTV  just lower than the boundary (scheme-2)


‣ Tiny difference on the results between two schemes ( Milene’s talk )

 Agreed upon to change to scheme-2 during circulation

https://indico.cern.ch/event/775145/contributions/3221666/attachments/1755486/2846051/QCD_scale_ptv_Delta2_update.pdf


PDF and alphaS variation

 49

‣ Uncertainties from the choice of the PDF and alphaS

‣ ICHEP inclusive measurement: 30 PDF4LHC15 + 2 alphaS weight variation enveloped

‣ STXS: 


‣ each of 30 PDF variations as an individual uncertainty

‣ one uncertainty accounts for the alphaS

‣ 31 uncertainties evaluated in each of high-granularity regions

‣ The impacts are small ( < 2% for qqWH )



Parton Shower / Underlying Events uncertainty
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‣ Inclusive measurement in ICHEP

‣ STXS:


‣ individual uncertainties for 4 Pythia-8 AZNLO tunes

‣ one dedicated uncertainty for the difference between Pythia-8 and Herwig-7

‣ uncertainty on the acceptance evaluated in each STXS bin

‣ fully correlated across all STXS bins

‣ Stewart-Tackman like in ICHEP:

‣ overall acceptance uncertainty

‣ 2/3j acceptance ratio as the 

migration effect


