CEPC Physics Workshop

Differential measurement on Higgs

Abdualazem Fadol, Li Gang, Yaquan Fang, Xifeng Ruan

July 3, 2019

Institute for Collider Particle Physics

University of the Witwater srand

Introduction

\square After the discovery of the SM Higgs particle a new era emerged in the so-called physics BSM;
\square This comes from the fact that the neutrino oscillation experiments showed that the neutrinos possess a tiny masses, unlike the SM;
\square In this context theorists and experimentalists are very keen to investigate this evidence;
\square Many theories have been proposed in this regards. For instance, the 2HDM model, in which particles heavier than the SM Higgs are suggested but yet to be observed;
\square Also, the crossing-symmetric of $e^{+} e^{-} \rightarrow H Z(\rightarrow \ell \ell)$ showed to be promising in probing BSM scenario; and
\square This is by argue that the angular asymmetries have the potential to reveal the hidden BSM physics in its differential cross section.

Introduction

\square A study showed the advantages of $e^{+} e^{-} \rightarrow H Z(\rightarrow \ell \ell)$ against $H Z(\rightarrow \ell \ell)$, see arXiv:1406.1361;
\square It suggested that a high-energy $\mathrm{e}^{+} e^{-}$colliders would provide a clean way to estimate the Higgs couplings; (CEPC)
\square In this study we are trying to develop a generator for $e^{+} e^{-} \rightarrow H Z(\rightarrow \ell \ell)$ within the CEPC framework;
\square Hence, use sophisticated differential cross section analysis to do Higgs couplings measurements;

The differential cross section $e^{+} e^{-} \rightarrow H Z(\rightarrow \ell \ell)$

$$
\frac{\mathrm{d} \sigma}{\mathrm{~d} \cos \theta_{1} \mathrm{~d} \cos \theta_{2} \mathrm{~d} \phi}=\frac{1}{m_{H}^{2}} \mathcal{N}_{\sigma}\left(q^{2}\right) \mathcal{J}\left(q^{2}, \theta_{1}, \theta_{2}, \phi\right)
$$

$\square \mathcal{N}_{\sigma}\left(q^{2}\right)$ is the normalisation factor and it can be written in terms of the dimensionless parameters r and s as:

$$
\mathcal{N}_{\sigma}\left(q^{2}\right)=\frac{1}{2^{10}(2 \pi)^{3}} \frac{1}{\sqrt{r} \gamma Z} \frac{\sqrt{\lambda(1, s, r)}}{s^{2}}
$$

\square The constant dimensionless parameters given by the following:

$$
s=\frac{q_{\mathrm{th}}^{2}}{m_{H}^{2}} \approx 2.98, r=\frac{m_{Z}^{2}}{m_{H}^{2}} \approx 0.53, \gamma Z=\frac{\Gamma_{Z}}{m_{H}} \approx 0.020
$$

The differential cross section $e^{+} e^{-} \rightarrow H Z(\rightarrow \ell \ell)$

$\square \mathcal{J}\left(q^{2}, \theta_{1}, \theta_{2}, \phi\right)$ depends on nine J_{i} functions expressed by:

$$
\begin{aligned}
\mathcal{J}\left(q^{2}, \theta_{1}, \theta_{2}, \phi\right) & =J_{1}\left(1+\cos ^{2} \theta_{1} \cos ^{2} \theta_{2}+\cos ^{2} \theta_{1}+\cos ^{2} \theta_{2}\right) \\
& +J_{2} \sin ^{2} \theta_{1} \sin ^{2} \theta_{2}+J_{3} \cos \theta_{1} \cos ^{2} \theta_{2} \\
& +\left(J_{4} \sin ^{2} \theta_{1} \sin ^{2} \theta_{2}+J_{5} \sin 2 \theta_{1} \sin 2 \theta_{2}\right) \sin \phi \\
& +\left(J_{6} \sin \theta_{1} \sin \theta_{2}+J_{7} \sin 2 \theta_{1} \sin 2 \theta_{2}\right) \cos \phi \\
& +J_{8} \sin ^{2} \theta_{1} \sin ^{2} \theta_{2} \sin 2 \phi+J_{9} \sin ^{2} \theta_{1} \sin ^{2} \theta_{2} \cos 2 \phi
\end{aligned}
$$

The differential cross section
 $e^{+} e^{-} \rightarrow H Z(\rightarrow \ell \ell)$

\square where the J_{i} are given:

$$
\begin{aligned}
J_{1} & =2 r s\left(g_{A}^{2}+g_{V}^{2}\right)\left(\left|H_{1, V}\right|^{2}+\left|H_{1, A}\right|^{2}\right), \\
J_{2} & =\kappa\left(g_{A}^{2}+g_{V}^{2}\right)\left[\kappa\left(\left|H_{1, V}\right|^{2}+\left|H_{1, A}\right|^{2}\right)+\lambda \operatorname{Re}\left(H_{1, V} H_{2, V}^{*}+H_{1, A} H_{2, A}^{*}\right)\right], \\
J_{3} & =32 r s g_{A} g_{V} \operatorname{Re}\left(H_{1, V} H_{1, A}^{*}\right), \\
J_{4} & =4 \kappa \sqrt{r s \lambda} \operatorname{Re}\left(H_{1, V} H_{3, A}^{*}+H_{1, A} H_{3, V}^{*}\right), \\
J_{5} & =\frac{1}{2} \kappa \sqrt{r s \lambda}\left(g_{A}^{2}+g_{V}^{2}\right) \operatorname{Re}\left(H_{1, V} H_{3, A}^{*}+H_{1, A} H_{3, V}^{*}\right), \\
J_{6} & =4 \sqrt{r s \lambda} g_{A} g_{V}\left[4 \kappa \operatorname{Re}\left(H_{1, V} H_{2, V}^{*}\right)+\lambda \operatorname{Re}\left(H_{1, A} H_{2, V}^{*}\right)\right], \\
J_{7} & =\frac{1}{2} \sqrt{r s}\left(g_{A}^{2}+g_{V}^{2}\right)\left[2 \kappa\left(\left|H_{1, V}\right|^{2}+\left|H_{1, A}\right|^{2}\right)+\lambda \operatorname{Re}\left(H_{1, V} H_{2, V}^{*}+H_{1, A} H_{2, A}^{*}\right)\right], \\
J_{8} & =2 r s \sqrt{\lambda}\left(g_{A}^{2}+g_{V}^{2}\right) \operatorname{Re}\left(H_{1, V} H_{3, V}^{*}+H_{1, A} H_{3, A}^{*}\right), \\
J_{9} & =2 r s \sqrt{\lambda}\left(g_{A}^{2}+g_{V}^{2}\right)\left(\left|H_{1, V}\right|^{2}+\left|H_{1, A}\right|^{2}\right) .
\end{aligned}
$$

The differential cross section
 $e^{+} e^{-} \rightarrow H Z(\rightarrow \ell \ell)$

$$
\begin{aligned}
& H_{1, V}=-\frac{2 m_{H}\left(\sqrt{2} G_{F}\right)^{1 / 2} r}{r-s} g_{V}\left(1+\hat{\alpha}_{1}^{\mathrm{eff}}-\frac{\kappa}{r} \hat{\alpha}_{Z Z}^{\mathrm{eff}}-\frac{\kappa}{2 r} \frac{Q_{l} g_{e m}(r-s)}{s g_{V}} \hat{\alpha}_{A Z}\right), \\
& H_{1, A}=\frac{2 m_{H}\left(\sqrt{2} G_{F}\right)^{1 / 2} r}{r-s} g_{A}\left(1+\hat{\alpha}_{2}^{\mathrm{eff}}-\frac{\kappa}{r} \hat{\alpha}_{Z Z}\right), \\
& H_{2, V}=-\frac{2 m_{H}\left(\sqrt{2} G_{F}\right)^{1 / 2} r}{r-s} g_{V}\left(2 \hat{\alpha}_{Z Z}-\frac{Q_{l} g_{e m}(r-s)}{s g_{V}} \hat{\alpha}_{A Z}\right), \\
& H_{2, A}=\frac{4 m_{H}\left(\sqrt{2} G_{F}\right)^{1 / 2} r}{r-s} g_{A} \hat{\alpha}_{Z \hat{Z}}, \\
& H_{3, V}=-\frac{2 m_{H}\left(\sqrt{2} G_{F}\right)^{1 / 2} r}{r-s} g_{V}\left(2 \hat{\alpha}_{Z \tilde{Z}}+\frac{Q_{l} g_{e m}(r-s)}{s g_{V}} \hat{\alpha}_{A \tilde{Z}}\right), \\
& H_{3, A}=\frac{4 m_{H}\left(\sqrt{2} G_{F}\right)^{1 / 2} r}{r-s} g_{A} \hat{\alpha}_{Z \tilde{Z}},
\end{aligned}
$$

Where $Q_{l}=-1$.

$$
\begin{aligned}
\hat{\alpha}_{1}^{\mathrm{eff}} & \equiv \hat{\alpha}_{Z Z}^{(1)}-\frac{m_{H}\left(\sqrt{2} G_{F}\right)^{1 / 2}(r-s)}{2 \sqrt{r}} \frac{\hat{\alpha}_{\Phi l}^{V}}{g_{V}} \\
\hat{\alpha}_{2}^{\mathrm{eff}} & \equiv \hat{\alpha}_{Z Z}^{(1)}+\frac{m_{H}\left(\sqrt{2} G_{F}\right)^{1 / 2}(r-s)}{2 \sqrt{r}} \frac{\hat{\alpha}_{\Phi l}^{A}}{g_{A}}
\end{aligned}
$$

\square The $\hat{\alpha}_{\Phi /}^{V}$ and $\hat{\alpha}_{\Phi /}^{A}$ curry the $d=6$ corrections into the Lagrangian.

The differential cross section $e^{+} e^{-} \rightarrow H Z(\rightarrow \ell \ell)$

$\square J_{i}, H_{i, V}$ and $H_{i, A}$ are really hard to estimate;
\square The challenge now is to figure out the $J_{i}, H_{i, V}$ and $H_{i, A}$;
\square In our generator we try to kill the variables that curry $d=6$;
\square This brings us back to the SM expression;
\square We show results for fixing $J_{3}, J_{4}, J_{5}, J_{6}, J_{7}$ and J_{8} to zero;
\square Always $J_{1}=ل_{9}$, and J_{3} will be changed to see how the angles affected.

Preliminary results

Preliminary results SM

Preliminary results

$\operatorname{BSM}\left(J_{1}=3, J_{2}=3.5, J_{1}=1.0, J_{8}=1.0, J_{9}=1.0\right)$

Preliminary results

$\operatorname{BSM}\left(J_{1}=3.0, J_{2}=3.5, J_{1}=1.0, J_{8}=1, J_{9}=1.0\right)$

Summary

\square We introduced the potential of the differential cross section of $e^{+} e^{-} \rightarrow H Z(\rightarrow \ell \ell)$ in probing the BSM scenario;
\square The results provided here are from under developing generator for $e^{+} e^{-}$collider; and
\square However, still lots of work have to be done for the estimation of the $d=6$ parameters.

Plans

- Take background into account;
- Do a 3D fit over θ_{1}, θ_{2} and ϕ;
- See how the effect of the J_{i} 's, and probe the sensitivity of CEPC experiment.

Thank you!

