Higgs Physics: Review & Discussion

Jianming Qian (University of Michigan)

CEPC Physics Workshop, Peking University Beijing, July 1-5, 2019

Decay-Blinded Tagging of Higgs Boson

Unique to lepton colliders, the energy and momentum of the Higgs boson in $ee \rightarrow ZH$ can be measured by looking at the Z kinematics only: $E_{_H} = \sqrt{s} - E_{_Z}, \quad \vec{p}_{_H} = -\vec{p}_{_Z}$

Recoil mass reconstruction:

$$m_{\rm recoil}^2 = \left(\sqrt{s} - E_Z\right)^2 - \left|\vec{p}_Z\right|^2$$

 \Rightarrow identify the Higgs boson without looking at the Higgs boson.

Measure $\sigma(ee \rightarrow ZH)$ independent of its decay ! (LHC always measures $\sigma \times BR$)

Main differences with LHC

• Production:

LHC: dominated by the QCD process \Rightarrow large theoretical uncertainties CEPC: pure electroweak process \Rightarrow precise theory calculations

• Trigger and identification:

LHC: based on specific Higgs boson decay signatures \Rightarrow *measure* $\sigma \times BR$ CEPC: Higgs boson decay blinded \Rightarrow *measure* σ *and BR*

• Environment:

LHC: suffer from underlying event and pileup effects CEPC: clean

• Statistics

HL-LHC: ~ 300 million Higgs bosons, recording about ~2% CEPC: ~ 1 million Higgs bosons, every event is gold

Updated LHC Projections

Assuming SM production cross sections

Assuming SM decay branching ratios

These are model-dependent projections !

What We Have Done

Chinese Physics C Vol. 43, No. 4 (2019) 043002

Precision Higgs Physics at the CEPC^{*}

Fenfen An^{4,23} Yu Bai⁹ Chunhui Chen²³ Xin Chen⁵ Zhenxing Chen³ Joao Guimaraes da Costa⁴
Zhenwei Cui³ Yaquan Fang^{4,6,34} Chengdong Fu⁴ Jun Gao¹⁰ Yanyan Gao²² Yuanning Gao³
Shao-Feng Ge^{15,29} Jiayin Gu¹³ Fangyi Guo^{1,4} Jun Guo¹⁰ Tao Han^{5,31} Shuang Han⁴
Hong-Jian He^{11,10} Xianke He¹⁰ Xiao-Gang He^{11,10,20} Jifeng Hu¹⁰ Shih-Chieh Hsu³² Shan Jin⁸
Maoqiang Jing^{4,7} Susmita Jyotishmati³³ Ryuta Kiuchi⁴ Chia-Ming Kuo²¹ Pei-Zhu Lai²¹ Boyang Li⁵
Congqiao Li³ Gang Li^{4,34} Haifeng Li¹² Liang Li¹⁰ Shu Li^{11,10} Tong Li¹²
Qiang Li³ Hao Liang^{4,6} Zhijun Liang^{4,34} Libo Liao⁴ Bo Liu^{4,23} Jianbei Liu¹
Tao Liu¹⁴ Zhen Liu^{26,30} Xinchou Lou^{4,6,33,34} Lianliang Ma¹² Bruce Mellado^{17,18} Xin Mo⁴
Mila Pandurovic¹⁶ Jianming Qian²⁴ Zhuoni Qian¹⁹ Nikolaos Rompotis²² Manqi Ruan⁴ Alex Schuy³²
Lian-You Shan⁴ Jingyuan Shi⁹ Xin Shi⁴ Shufang Su²⁵ Dayong Wang³ Jin Wang⁴
Uian-Tao Wang²⁷ Yifang Wang^{4,6} Zhaoru Zhang⁴ Mingrui Zhao² Xianghu Zhao⁴ Ning Zhou¹⁰

Abstract: The discovery of the Higgs boson with its mass around 125 GeV by the ATLAS and CMS Collaborations marked the beginning of a new era in high energy physics. The Higgs boson will be the subject of extensive studies of the ongoing LHC program. At the same time, lepton collider based Higgs factories have been proposed as a possible next step beyond the LHC, with its main goal to precisely measure the properties of the Higgs boson and probe potential new physics associated with the Higgs boson. The Circular Electron Positron Collider (CEPC) is one of such proposed Higgs factories. The CEPC is an e^+e^- circular collider proposed by and to be hosted in China. Located in a tunnel of approximately 100 km in circumference, it will operate at a center-of-mass energy of 240 GeV as the Higgs factory. In this paper, we present the first estimates on the precision of the Higgs boson property measurements achievable at the CEPC and discuss implications of these measurements.

Key words: CEPC, Higgs boson, Higgs boson properties, Higgs boson couplings, Higgs factory, Effective Field Theory, EFT

PACS: 1–3 PACS(Physics and Astronomy Classification Scheme, http://www.aip.org/pacs/pacs.html/)

Jianming Qian (University of Michigan) 5

Final States Studied

$H \rightarrow bb/cc/gg$

${\cal Z}$ decay mode	$H \to b \bar{b}$	$H\!\rightarrow\!c\bar{c}$	$H\!\rightarrow\!gg$
$Z \rightarrow e^+e^-$	1.3%	12.8%	6.8%
$Z \rightarrow \mu^+ \mu^-$	1.0%	9.4%	4.9%
$Z \rightarrow q\bar{q}$	0.5%	10.6%	3.5%
$Z \rightarrow \nu \bar{\nu}$	0.4%	3.7%	1.4%
Combined	0.3%	3.1%	1.2%

$H \rightarrow ZZ^*$

Z_1	Precision	
$Z \rightarrow \mu^+ \mu^-$	$H \rightarrow ZZ^* \rightarrow \nu \bar{\nu} q \bar{q}$	7.2%
$Z \rightarrow \nu \bar{\nu}$	$H\!\rightarrow\! ZZ^{\star}\!\rightarrow\!\ell^{+}\ell^{-}q\bar{q}$	7.9%
	Combined	4.9%

$H \rightarrow$ Invisible

ZH final		Relative precision	Upper limit on	
state studied		on $\sigma \times BR$	$BR(H \rightarrow inv)$	
$Z \rightarrow e^+e^-$	$H \rightarrow inv$	339%	0.82%	
$Z \rightarrow \mu^+ \mu^-$	$H \rightarrow inv$	232%	0.60%	
$Z \rightarrow q \bar{q}$	$H \rightarrow \text{inv}$	217%	0.57%	
Combined		143%	0.41%	

 $H \rightarrow WW^*$

	ZH final state		
$Z {\rightarrow} e^+ e^-$	$H \mathop{\rightarrow} WW^* \mathop{\rightarrow} \ell \nu \ell' \nu, \ell \nu q \bar{q}$	2.6%	
$Z{\rightarrow}\mu^+\mu^-$	$H \mathop{\rightarrow} WW^{\star} \mathop{\rightarrow} \ell \nu \ell' \nu, \ell \nu q \bar{q}$	2.4%	
$Z \rightarrow \nu \bar{\nu}$	$H \rightarrow WW^* \rightarrow \ell \nu q \bar{q}, q \bar{q} q \bar{q}$	1.5%	
$Z \rightarrow q \bar{q}$	$H \mathop{\rightarrow} WW^* \mathop{\rightarrow} q\bar{q}q\bar{q}$	1.7%	
	Combined	0.9%	

Н-	\rightarrow	ττ
----	---------------	----

ZH fir	Precision	
$Z \rightarrow \mu^+ \mu^-$	$H{\rightarrow}\tau^+\tau^-$	2.6%
$Z \rightarrow e^+e^-$	$H{\rightarrow}\tau^+\tau^-$	2.6%
$Z \rightarrow \nu \bar{\nu}$	$H{\rightarrow}\tau^+\tau^-$	2.5%
$Z \rightarrow q \bar{q}$	$H{\rightarrow}\tau^+\tau^-$	0.9%
Com	0.79%	

Other final states: $H \rightarrow \gamma\gamma: Z \rightarrow \mu\mu, \tau\tau, \nu\nu, qq$ $H \rightarrow Z\gamma: ZZ \rightarrow \nu\nu qq$ $H \rightarrow \mu\mu: Z \rightarrow \ell\ell, \nu\nu, qq$ $ee \rightarrow \nu\nu H \rightarrow \nu\nu bb$

A lot final states have been studied, many more remain unexplored...

F	ut	ure	C	ollio	ders	in	а	ch	art ve
Collider	Туре	\sqrt{s}	$\mathscr{P}[\%]$	N(Det.)	\mathscr{L}_{inst}	\mathscr{L}	Time	Refs.	Abbreviation
			[e /e]				[years]	5103	
HL-LHC	pp	14 TeV	-	2	5	6.0	12	[10]	Ho-CHC
HE-LHC	pp	27 TeV	-	2	16	15.0	20	[10]	HE-LHC
FCC-hh	pp	100 TeV	-	2	30	30.0	25	[1]	FCC-hh
FCC-ee	ee	M_Z	0/0	2	100/200	150	4	[1]	~
		$2M_W$	0/0	2	25	10	1-2	2	
		240 GeV	0/0	2	7	5	3	୍	FCC-ee ₂₄₀
		$2m_{top}$	0/0	2	0.8/1.4	1.5	5		FCC-ee ₃₆₅
							(+1)	(ly SI	D before $2m_{top}$ run)
ILC	ee	250 GeV	$\pm 80/\pm 30$	1	1.35/2.7	2.0	11.5	[5,11]	ILC250
		350 GeV	$\pm 80/\pm 30$	1	1.6	0.2	1		ILC350
		500 GeV	$\pm 80/\pm 30$	1	1.8/3.6	4.0	8.5		ILC500
							(+1)	(1y SD	after 250 GeV run)
CEPC	ee	Mz	0/0	2	17/32	16	2	[2]	CEPC
		$2M_W$	0/0	2	10	2.6	1		
		240 GeV	0/0	2	3	5.6	7		
CLIC	ee	380 GeV	$\pm 80/0$	1	1.5	1.0	8	[12]	CLIC ₃₈₀
		1.5 TeV	$\pm 80/0$	1	3.7	2.5	7		CLIC ₁₅₀₀
		3.0 TeV	$\pm 80/0$	1	6.0	5.0	8		CLIC ₃₀₀₀
							(+4)	(2y SDs b	etween energy stages)
LHeC	ep	1.3 TeV	-	1	0.8	1.0	15	[9]	LHeC
HE-LHeC	ep	1.8 TeV	-	1	1.5	2.0	20	[1]	HE-LHeC
FCC-eh	ep	3.5 TeV	-	1	1.5	2.0	25	[1]	FCC-eh

• The values for \s are approximate: when a scan is proposed: included in the closest value

• When the entire programme is discussed, the highest energy value label is used inclusively

Higgs@Future Colliders Report Higgs Boson studies at future particle colliders - Preliminary Version -Introduction 1 J. de Blas^{1,2}, M. Cepeda³, J. D'Hondt⁴, R. K. Ellis⁵, C. Grojean^{6,7}, B. Heinemann^{6,8}, F. Maltoni^{9,10}, A. Nisati^{11,4}, E. Petit¹², R. Rattazzi¹³, and W. Verkerke¹⁴ Methodology 2 ¹Dipartimento di Fisica e Astronomia Galileo Galilei, Universita di Padova, Via Marzolo 8, I-35131 Padova, Italy The Higgs boson couplings to fermions and vector bosons 3 Istituto Nazionale di Fisica Nucleare (INFN), Sezione di Padova Via Marzolo 8, I-35131 Padova, Italy The kappa framework ³Centro de Investigaciones Energéticas, Medicambientales y Tecnológicas (CIEMAT), Avda. Complutense 40. 3.1 28040, Madrid, Spain ⁴Inter-University Institute for High Energies (IIHE), Vrije Universiteit Brussel, Brussels, 1050, Belgium 3.2 Results from the kappa-framework solvies and comparison ⁵IPPP, University of Durham, Durham DH1 3LE, UK 3.3 Effective field theory description solution couplings ⁶Deutsches Elektronen-Synchrotron (DESY), Hamburg, 22607, Germany ⁷Institut für Physik, Humboldt-Universität, Berlin, 12489, Germany Albert-Ludwigs-Universität Freiburg, Freiburg, 79104, Germany 3.4 Results from the EFT framework studies ³Centre for Cosmology, Particle Physics and Phenomenology, Université catholique de Louvain, Louvain-la-Neuve,1348, Belgium 3.5 Impact of Standard Model theory uncertainties in Higgs calculations . ¹⁰Dipartimento di Fisica e Astronomia, Università di Bologna and INFN, Sezione di Bologna, via Irnerio 46, 40126 Bologna, Italy ¹¹Istituto Nazionale di Fisica Nucleare (INFN), Sezione di Roma, P.le A. Moro 2, I-00185 Roma, Italy The Higgs boson self-coupling 4 12 Aix Marseille Univ, CNRS/IN2P3, CPPM, Marseille, France ¹³Theoretical Particle Physics Laboratory (LPTP).EPFL, Lausanne, Switzerland Rare Higgs boson decays 14Nikhef and University of Amsterdam, Science Park 105, 1098XG Amsterdam, the Netherlands 5 *Corresponding author Sensitivity to Higgs CP 6 ABSTRACT The Higgs boson mass and full width 7 This document aims to provide an assessment of the potential of future colliding beam facilities to perform Higgs boson studies. Future studies of the Higgs sector, post-European Strategy 8 The analysis builds on the submissions made by the proponents of future colliders to the European Strategy Update process, and takes as its point of departure the results expected at the completion of the HL-LHC program. This report presents Higgs prospects at the muon collider quantitative results on many aspects of Higgs physics for future collider projects using uniform methodologies for all proposed 8.1 machine projects of sufficient maturity. This report is still preliminary and is distributed for the purposes of discussion at the Open Symposium in Granada (13-16/05/2019). 8.3 What and Why: Higgs prospect studies beyond this report 9 Summary

arXiv:1905.03764

European Strategy Update

CEPC Higgs physics sensitivity projections were fairly presented at the open symposium: <u>https://cafpe.ugr.es/eppsu2019/</u>

hanna 2 annaria				HI	L-LHC+			1	
kappa-5 scenario	ILC ₂₅₀	ILC500	CLIC ₃₈₀	CLIC ₁₅₀₀	CLIC ₃₀₀₀	CEPC	FCC-ee ₂₄₀	FCC-ee ₃₆₅	FCC-ee/eh/hh
κ_W (%)	1.1	0.29	0.75	0.4	0.38	0.95	0.95	0.41	0.2
$\kappa_Z(\%)$	0.29	0.23	0.44	0.39	0.39	0.18	0.19	0.17	0.17
$\kappa_g(\%)$	1.4	0.84	1.5	1.1	0.86	1.1	1.2	0.89	0.53
κ_{γ} (%)	1.3	1.2	1.5*	1.3	1.1	1.2	1.3	1.2	0.36
$\kappa_{Z\gamma}$ (%)	11.*	11.*	11.*	8.4	5.7	6.3	11.*	10.	0.7
κ_c (%)	2.	1.2	4.1	1.9	1.4	2.	1.6	1.3	0.97
κ_t (%)	2.7	2.4	2.7	1.9	1.9	2.6	2.6	2.6	0.95
κ_b (%)	1.2	0.57	1.2	0.61	0.53	0.92	1.	0.64	0.48
κ_{μ} (%)	4.2	3.9	4.4*	4.1	3.5	3.9	4.	3.9	0.44
κ_r (%)	1.1	0.64	1.4	0.99	0.82	0.96	0.98	0.66	0.49
BR _{inv} (<%, 95% CL)	0.26	0.22	0.63	0.62	0.61	0.27	0.22	0.19	0.024
BR _{unt} (<%, 95% CL)	1.8	1.4	2.7	2.4	2.4	1.1	1.2	1.	1.

FCC-ee at 240 GeV and CEPC have very similar projections

Recommendations from CDR review

Higgs physics.

Findings: At a center-of-mass energy of 240 GeV the CEPC operates as a Higgs boson factory. In seven years the facility is expected to produce approximately 1 million $e^+e^- \rightarrow ZH$ events that allow a direct and model-independent scrutiny of its properties and its interactions with nearly all other elementary particles. The capabilities of CEPC as a Higgs factory are carefully evaluated and convincingly presented. The potential for precise Higgs coupling measurements significantly exceeds the precision that can be achieved at the Large Hadron Collider and is very competitive compared to other proposals for electron-positron colliders. The main modes, $\tau \tau/bb/c\bar{c}/gg$, are well covered. In the WW/ZZ channels, it would be helpful to report separately all the leptonic and hadronic channels.

R1: The Higgs analyses and the sensitivities in the measurement of the Higgs couplings are well documented and studied in the context of various prominent models of new physics. It would be helpful to establish what is the CEPC power in discriminating among these different models through a global fit.

R2: Highlight the capability of CEPC to establish the Higgs couplings to the second generation of quarks (and leptons).

R3: Understand the indirect sensitivity to the top quark Yukawa coupling and Higgs self coupling in a global analysis at next-to-leading order accuracy of low-energy Higgs data

R4: In the H \rightarrow invisible channel, it would be helpful to report the relative importance of the leptonic and hadronic Z decay channels as the latter one fixes the goal of the jet energy resolution.

R5: In the ZH \rightarrow ZZy channel, we recommend to consider the decay of one Z into charged leptons in addition to the neutrino channel.

Towards TDR

Examples of possible improvements

- Maximum use of detector information
 - Improving electron energy measurement;
 - Estimate sensitivities of missing final states;
- Improve (some) existing analyses
 - Fully exploit kinematic information of both signal and background events;
 - Use advanced analysis techniques for signal and background separation;
 - Global (combined) analysis approaches;
- Moving beyond
 - Spin/CP property studies;
 - Differential cross section measurements
 - BSM studies;

What performance requirements that may impact detector design changes from the baseline? Jet energy resolution?

Missing Channels

$H \rightarrow ZZ^*$

ZH final	state	Precision
$Z \rightarrow \mu^+ \mu^- H \rightarrow$	$ZZ^* \rightarrow \nu \bar{\nu} q \bar{q}$	7.2%
$Z \rightarrow \nu \bar{\nu}$ $H \rightarrow$	$ZZ^* \rightarrow \ell^+ \ell^- q \bar{q}$	7.9%
Combi	ned	4.9%

Missing: $Z \rightarrow qq$ Might be important (relatively) based on the $H \rightarrow WW^*$ studies

$H \rightarrow WW^*$

	ZH final state	Precision
$Z \rightarrow e^+e^-$	$H \mathop{\rightarrow} WW^* \mathop{\rightarrow} \ell \nu \ell' \nu, \ell \nu q \bar{q}$	2.6%
$Z{\rightarrow}\mu^+\mu^-$	$H \mathop{\rightarrow} WW^* \mathop{\rightarrow} \ell \nu \ell' \nu, \ell \nu q \bar{q}$	2.4%
$Z \rightarrow \nu \bar{\nu}$	$H \rightarrow WW^* \rightarrow \ell \nu q \bar{q}, q \bar{q} q \bar{q}$	1.5%
$Z \rightarrow q \bar{q}$	$H \to WW^* \to q\bar{q}q\bar{q}$	1.7%
	Combined	0.9%

 $ZH \rightarrow ZZ\gamma \rightarrow v\overline{v}q\overline{q}\gamma$

Electron Energy Measurement

Much worse recoil mass resolution in the electron channel due to Bremstrahlung radiation, should be able to improve with radiation recovery.

Event Kinematics

Can analyses be improved through the exploitation of kinematics of both signal and background events?

Example:

- qqH, Higgs→invisible;
- Physics benchmarks Manoi Ruan Key measurement for the DM search, significant LHC

Signal: $ZH \rightarrow qq$ inv Background: $ZZ \rightarrow qq vv$

Both signal and background events have the same dijet mass, but different recoil masses: M_7 vs M_H .

Can the qq mass constraint improve the recoil mass resolution? 805

Another example, $ZH \rightarrow qq \mu\mu$ is ideal final state for kinematic fitting

Advanced Analysis Techniques

Many analyses have dozen of cuts on different observables

Example:

Hao Liang: $vvH \rightarrow vvbb$ @ 360 GeV

 $\nu\nu bb(W$ fusion) $\nu\nu bb(ZH)$ No. 34.5k29.5k100.0% $N_{\rm PFOs} \le 17$ 100.0%100 < E < 20096.3%85.9% $15 < P_T < 150$ 91.3%84.6% $N_{\rm lep} \leq 1$ 87.6%81.6%104 < M < 14577.0%70.2%76.5%65.0% $M_{\rm rec} < 255$ 74.2%54.9% $y_{12} < 0.1$ $y_{23} < 0.07$ 70.6%54.1% $y_{34} < 0.01$ 69.0%53.5%47.0% $\cos(\theta_{\text{di-jet}}) < 0.2$ 68.1%di-b likeness > 0.564.9%45.0%No. 22.4k13.3k

Multivariate Analysis Techniques are ideal suited for this type of analyses.

At LHC, complex analyses are done almost *exclusively* using MVA techniques (NN, BDT, ...)

Example: ATLAS $H \rightarrow b\overline{b}$ analysis

"Global" Analyses

Instead of Higgs decay mode oriented analyses, we should perhaps focus more on finalstate oriented analyses

Hadronic final state is a good final state to exercise the global analysis

$$ZH \rightarrow (qq, vv)(bb, cc, gg, WW, ZZ)$$
$$WW \rightarrow qqqq$$
$$ZZ \rightarrow qqvv, qqqq$$

Majority of the events at CEPC ! Need good iterative jet algorithm to classify events into 2, 3, 4, 5, 6, ... jets !

Potential of the 360 GeV Running

Kaili Zhang

	5.6ab ⁻¹ , 240	2ab ⁻¹ , 360	1.5ab ⁻¹ , 360
$\sigma(ZH)$	0.50%	1% ?	
$\sigma(ZH) * Br(H \rightarrow bb)$	0.27%	0.63%	0.71%
$\sigma(ZH) * Br(H \rightarrow cc)$	3.3%	6.2%	7.2%
$\sigma(ZH) * Br(H \rightarrow gg)$	1.3%	2.4%	2.7%
$\sigma(ZH) * Br(H \rightarrow WW)$	1.0%	2.0%	2.3%
$\sigma(ZH) * Br(H \rightarrow ZZ)$	5.1%	12%	14%
$\sigma(ZH) * Br(H \rightarrow \tau \tau)$	0.8%	1.5%	1.7%
$\sigma(ZH) * Br(H \rightarrow \gamma \gamma)$	5.4%	8%	9.2%
$\sigma(ZH) * Br(H \rightarrow \mu\mu)$	12%	29%	33%
$\sigma(vvH) * Br(H \rightarrow bb)$	3%	0.79%	0.91%
$Br_{upper}(H \rightarrow inv.)$	0.2%	۸	۸
$\sigma(ZH) * Br(H \rightarrow Z\gamma)$	16%	25%	29%
Width	2.8%	~0.8%	

- * Solidify σ (ZH) precision estimate
- Combined 240 and 360 coupling analyses
- Are other Higgs decay modes in vvH useful?
- ✤ Is eeH useful?

Anything else?

Differential Distributions

A few canonical Higgs differential distributions Transverse momentum Polar angle What are other important distributions?

Likely need to combine multiple analyses or through the global analysis

Higgs Boson CP Studies

Extrapolated from phenomenological studies for Higgs white paper

- f_{a2} : fraction of high-order CP-even contribution due to SM or BSM physics
- f_{a3} : fraction of CP-odd contribution due to BSM physics

Anything else worth doing at this point?

Discussion

Limited resources, cannot be too ambitious, need to choose a few well-defined topics which are either important or good benchmarks

- What are things that are essential?
- What are things that are nice to have?

What should be the deliverable? An update paper? If so, what time scale?