



Institute of High Energy Physics Chinese Academy of Sciences

# **CEPC EWK white paper**

**Zhijun Liang** 

Institute of High Energy Physics , Chinese Academy of Science

## Summary of EWK section

- New measurements (Hao Zhang)
  - Exotic Z-decay
  - energy correlations measurements
- EFT (Higgs + EWK), Jiayin Gu
- New EWK fit, Top FCNC , Cen Zhang
  - Combing different experiments in different energy scale
- R\_b measurement (LI Bo )
  - B tagging and Systematics study
- W mass measurement with Threshold scan (Peixun Shen, Gang Li)
- LHC EWK input and Z->4I (Yu Sheng)





# Plan for white paper

### • Target for ECFA

- Short write up to document about expected precision of EWK measurement
- More editing needed
  - http://cepcgit.ihep.ac.cn/CEPC-White-Paper/electroweak-physics
- Longer term goal
  - More details study on systematics in each measurement
    - R\_b
    - W mass
    - Tau polarization
  - aTGCs
  - Z rare decay (Direct search for new physics)

## **CEPC EWK input to ECFA**

|          | $\Gamma_Z$              | $\sigma_{ m had}$   |                     | $A_e (\tau \text{ pol})$ | $A_{\tau} (\tau \text{ pol})$ |
|----------|-------------------------|---------------------|---------------------|--------------------------|-------------------------------|
| CEPC     | $0.5\mathrm{MeV}$       | $0.005\mathrm{nb}$  |                     | 0.0003                   | 0.0005                        |
| FCC-ee   | $0.1\mathrm{MeV}$       | $0.005\mathrm{nb}$  |                     | _                        | _                             |
|          | $R_e$                   | $R_{\mu}$           | $R_{\tau}$          | $R_b$                    | $R_c$                         |
| CEPC     | 0.0003                  | 0.0001              | 0.0002              | 0.0002                   | 0.001                         |
| FCC-ee   | 0.0003                  | 0.00005             | 0.0001              | 0.0003                   | 0.0015                        |
|          | $A_{\mathrm{FB}}^{0,e}$ | $A^{0,\mu}_{ m FB}$ | $A_{ m FB}^{0,	au}$ | $A_{ m FB}^{0,b}$        | $A^{0,c}_{ m FB}$             |
| CEPC     | 0.005                   | 0.003               | 0.005               | 0.001                    | 0.003                         |
| FCC-ee   | _                       | _                   | _                   | _                        | _                             |
| (fitted) | $A_e$                   | $A_{\mu}$           | $A_{	au}$           | $A_b$                    | $A_c$                         |
| CEPC     | 0.0003                  | 0.003               | 0.0005              | 0.001                    | 0.003                         |
| FCC-ee   | 0.0001                  | 0.00015             | 0.0003              | 0.003                    | 0.008                         |

Table 1: A comparison of CEPC and FCC-ee Z-pole inputs. All uncertainties are relative (normalized to 1) except for  $\Gamma_Z$  and  $\sigma_{had}$ . " $\tau$  pol" denotes that the measurement is from  $\tau$  polarization in  $Z \to \tau^+ \tau^-$ . The 5 fitted asymmetry observables  $(A_{e,\mu,\tau,b,c})$  are derived from a simutanous fit of all the  $A_{FB}^{0}$  observables as well as the  $A_e$  and  $A_{\tau}$  from  $\tau$  polarization.

## White paper: TGC , EFT

### • aTGCs (EFT) in Z/WW/ZH runs

- Combing measurements from Z/WW/ZH and top measurements
- Some study about experimental study and detector requirement needed
- Yusheng , Shu , Jiayin, Cen Zhang



## Z rare decay

- Z->4l, Z->di-photons, ...
  - Direct search for new physics
  - Yusheng, Hao Zhang, ....



| Exotic decays                       | Topologies                                                                          | <i>n</i> <sub>res</sub> | Models                                                                                        |
|-------------------------------------|-------------------------------------------------------------------------------------|-------------------------|-----------------------------------------------------------------------------------------------|
| $Z \to E + \gamma$                  | $Z \rightarrow \chi_1 \chi_2, \chi_2 \rightarrow \chi_1 \gamma$                     | 0                       | 1A: $\frac{1}{\Delta_{\mu\nu}} \bar{\chi_2} \sigma^{\mu\nu} \chi_1 B_{\mu\nu}$ (MIDM)         |
|                                     | $Z \to \chi \bar{\chi} \gamma$                                                      | 0                       | 1B: $\frac{1}{\Lambda_{1D}^3} \bar{\chi} \chi B_{\mu\nu} B^{\mu\nu}$ (RayDM)                  |
|                                     | $Z \to a\gamma \to (E')\gamma$                                                      | 1                       | 1C: $\frac{1}{4\Lambda_{1c}}aB_{\mu\nu}\tilde{B}^{\mu\nu}$ (long-lived ALP)                   |
|                                     | $Z 	o A' \gamma 	o (\bar{\chi} \chi) \gamma$                                        | 1                       | 1D: $\epsilon^{\mu\nu\rho\sigma}A'_{\mu}B_{\nu}\partial_{\rho}B_{\sigma}$ (Wess-Zumino terms) |
| $Z \rightarrow E + \gamma \gamma$   | $Z \to \phi_d A',  \phi_d \to (\gamma \gamma),  A' \to (\bar{\chi} \chi)$           | 2                       | 2A: Vector portal                                                                             |
|                                     | $Z \to \phi_H \phi_A, \ \phi_H \to (\gamma \gamma), \ \phi_A \to (\bar{\chi} \chi)$ | 2                       | 2B: 2HDM extension                                                                            |
|                                     | $Z \to \chi_2 \chi_1, \chi_2 \to \chi_1 \phi, \phi \to (\gamma \gamma)$             | 1                       | 2C: Inelastic DM                                                                              |
|                                     | $Z \rightarrow \chi_2 \chi_2, \chi_2 \rightarrow \gamma \chi_1$                     | 0                       | 2D: MIDM                                                                                      |
| $Z \to \not\!\!\!E + \ell^+ \ell^-$ | $Z 	o \phi_d A', A' 	o (\ell^+ \ell^-), \phi_d 	o (\bar{\chi}\chi)$                 | 2                       | 3A: Vector portal                                                                             |

## White paper : R\_b from Z->bb

- R\_b
  - B tagging and systematics study
  - Bo Li, Yu Bai

|                          | (Measured Rb-0.2158)/0.2158 |           |           |           |           |           |
|--------------------------|-----------------------------|-----------|-----------|-----------|-----------|-----------|
|                          | Prob>0.6                    | Prob>0.70 | Prob>0.80 | Prob>0.90 | Prob>0.95 | Prob>0.99 |
| $\epsilon_{c} \pm 10\%$  | 0.55%                       | 0.34%     | 0.19%     | 0.09%     | 0.05%     | 0.01%     |
| $\epsilon_{uds}~\pm10\%$ | 0.21%                       | 0.14%     | 0.10%     | 0.06%     | 0.04%     | 0.02%     |
| $C_b \pm 10\%$           | 10.12%                      | 10.09%    | 10.08%    | 10.06%    | 10.06%    | 10.05%    |

# $A_e$ and $A_\tau$ in Z-> $\tau\tau$ ( $\tau$ polarization)



$$A_{\rm FB} = \frac{\sigma_{\rm F} - \sigma_{\rm B}}{\sigma_{\rm F} + \sigma_{\rm B}}$$

$$A_{\rm LR} = \frac{\sigma_{\rm L} - \sigma_{\rm R}}{\sigma_{\rm L} + \sigma_{\rm R}} \frac{1}{\langle |\mathcal{P}_{\rm e}| \rangle}$$

$$A_{\rm LRFB} = \frac{(\sigma_{\rm F} - \sigma_{\rm B})_{\rm L} - (\sigma_{\rm F} - \sigma_{\rm B})_{\rm R}}{(\sigma_{\rm F} + \sigma_{\rm B})_{\rm L} + (\sigma_{\rm F} + \sigma_{\rm B})_{\rm R}} \frac{1}{\langle |\mathcal{P}_{\rm e}| \rangle}$$

## • $A_e$ and $A_\tau$ using polarization info

| (derived) | $A_e$  | $A_{\mu}$ | $A_{\tau}$ | $A_b$  | $A_c$  |
|-----------|--------|-----------|------------|--------|--------|
| CEPC      | 0.0025 | 0.0039    | 0.0056     | 0.0027 | 0.0039 |
| FCC-ee    | 0.0001 | 0.00015   | 0.0003     | 0.003  | 0.008  |

•  $A_e$  and  $A_\tau$  with polarization info (from tau or from beam)

| (fitted) | $A_e$  | $A_{\mu}$ | $A_{	au}$ | $A_b$ | $A_c$ |
|----------|--------|-----------|-----------|-------|-------|
| CEPC     | 0.0003 | 0.003     | 0.0005    | 0.001 | 0.003 |
| FCC-ee   | 0.0001 | 0.00015   | 0.0003    | 0.003 | 0.008 |

## Summary

- Welcome to join CEPC EWK study
  - Input for ECFA (to be documented in short writeup )
  - <u>http://cepcgit.ihep.ac.cn/CEPC-White-Paper/electroweak-physics</u>

- Longer term goal for white paper
  - More details study on systematics in each measur
    - R\_b
    - W mass
    - $A_e$  and  $A_\tau$  in Z-> $\tau\tau$  ( $\tau$  polarization)
  - aTGCs
  - Z rare decay (Direct search for new physics)





该二维码7天内(7月12日前)有效,重新进入将更新

## Backup: Summary of workshop

### **Exotic Z-decay**



| Exotic decays                       | Topologies                                                                                      | n <sub>res</sub> | Models                                                                                        |
|-------------------------------------|-------------------------------------------------------------------------------------------------|------------------|-----------------------------------------------------------------------------------------------|
| $\overline{Z \to E + \gamma}$       | $Z \rightarrow \chi_1 \chi_2, \chi_2 \rightarrow \chi_1 \gamma$                                 | 0                | 1A: $\frac{1}{\Lambda_{12}}\bar{\chi_2}\sigma^{\mu\nu}\chi_1 B_{\mu\nu}$ (MIDM)               |
|                                     | $Z 	o \chi \bar{\chi} \gamma$                                                                   | 0                | $1B: \frac{1}{\Lambda_{x}^3} \bar{\chi} \chi B_{\mu\nu} B^{\mu\nu}$ (RayDM)                   |
|                                     | $Z \to a\gamma \to (E')\gamma$                                                                  | 1                | 1C: $\frac{1}{4\Lambda_{\nu}c}aB_{\mu\nu}\tilde{B}^{\mu\nu}$ (long-lived ALP)                 |
|                                     | $Z 	o A' \gamma 	o (ar{\chi} \chi) \gamma$                                                      | 1                | 1D: $\epsilon^{\mu\nu\rho\sigma}A'_{\mu}B_{\nu}\partial_{\rho}B_{\sigma}$ (Wess-Zumino terms) |
| $Z \rightarrow E + \gamma \gamma$   | $Z \to \phi_d A',  \phi_d \to (\gamma \gamma),  A' \to (\bar{\chi} \chi)$                       | 2                | 2A: Vector portal                                                                             |
|                                     | $Z \to \phi_H \phi_A, \ \phi_H \to (\gamma \gamma), \ \phi_A \to (\bar{\chi} \chi)$             | 2                | 2B: 2HDM extension                                                                            |
|                                     | $Z \rightarrow \chi_2 \chi_1, \chi_2 \rightarrow \chi_1 \phi, \phi \rightarrow (\gamma \gamma)$ | 1                | 2C: Inelastic DM                                                                              |
|                                     | $Z \rightarrow \chi_2 \chi_2, \chi_2 \rightarrow \gamma \chi_1$                                 | 0                | 2D: MIDM                                                                                      |
| $Z \to \not\!\!\!E + \ell^+ \ell^-$ | $Z 	o \phi_d A', A' 	o (\ell^+ \ell^-), \phi_d 	o (\bar{\chi}\chi)$                             | 2                | 3A: Vector portal                                                                             |

## Summary of workshop

### Loops as "direct" probes

#### Consider Z(->II) + H

Under T transformation without interchanging the initial and final states,

 $\frac{d^{3}\sigma}{d\cos\Theta d\cos\theta d\phi} \rightarrow \underbrace{F_{1}(1+\cos^{2}\theta)+F_{2}(1-3\cos^{2}\theta)+F_{3}\sin2\theta\cos\phi+F_{4}\sin^{2}\theta\cos2\phi}_{\text{T-even}} + \underbrace{F_{5}\cos\theta+F_{6}\sin\theta\cos\phi}_{\text{T-even}} \underbrace{-F_{7}\sin\theta\sin\phi-F_{8}\sin2\theta\sin\phi-F_{9}\sin^{2}\theta\sin2\phi}_{\text{T-odd}},$ 

Define T-odd asymmetries  $(A_7, A_8, A_9)$  by

$$A_{(7,8,9)} \equiv \frac{F_{(7,8,9)}}{F_1}, \qquad A_7 \propto \frac{N(\sin \phi > 0) - N(\sin \phi < 0)}{N(\sin \phi > 0) + N(\sin \phi < 0)} \text{ etc}$$
8/1

### You can't really separate Higgs from the rest of the SM!

 $\begin{array}{l} \bullet \quad \mathcal{O}_{H\ell} = i H^{\dagger} \overleftrightarrow{D_{\mu}} H \overline{\ell}_{L} \gamma^{\mu} \ell_{L}, \\ \mathcal{O}_{H\ell}' = i H^{\dagger} \sigma^{a} \overleftrightarrow{D_{\mu}} H \overline{\ell}_{L} \sigma^{a} \gamma^{\mu} \ell_{L}, \\ \mathcal{O}_{He} = i H^{\dagger} \overleftrightarrow{D_{\mu}} H \overline{e}_{R} \gamma^{\mu} e_{R} \end{array}$ 

(or the ones with quarks)

- modifies gauge couplings of fermions,
- also generates hVff type contact interaction.

