CEPC EWK white paper

Zhijun Liang

Institute of High Energy Physics ，
Chinese Academy of Science

Summary of EWK section

- New measurements (Hao Zhang)
- Exotic Z-decay
- energy correlations measurements

- EFT (Higgs + EWK), Jiayin Gu
- New EWK fit, Top FCNC , Cen Zhang
- Combing different experiments in different energy scale
- R_b measurement (LI Bo)
- B tagging and Systematics study
- W mass measurement with Threshold scan (Peixun Shen , Gang Li)
- LHC EWK input and Z->4l (Yu Sheng)

Plan for white paper

- Target for ECFA
- Short write up to document about expected precision of EWK measurement
- More editing needed
- http://cepcgit.ihep.ac.cn/CEPC-White-Paper/electroweak-physics
- Longer term goal
- More details study on systematics in each measurement
- R_b
- W mass
- Tau polarization
- aTGCs
- Z rare decay (Direct search for new physics)

CEPC EWK input to ECFA

	Γ_{Z}	$\sigma_{\text {had }}$		$A_{e}(\tau$ pol $)$	$A_{\tau}(\tau$ pol $)$
CEPC	0.5 MeV	0.005 nb		0.0003	0.0005
FCC-ee	0.1 MeV	0.005 nb		-	-
	R_{e}	R_{μ}	R_{τ}	R_{b}	R_{c}
CEPC	0.0003	0.0001	0.0002	0.0002	0.001
FCC-ee	0.0003	0.00005	0.0001	0.0003	0.0015
	$A_{\mathrm{FB}}^{0, e}$	$A_{\mathrm{FB}}^{0, \mu}$	$A_{\mathrm{FB}}^{0, \tau}$	$A_{\mathrm{FB}}^{0, b}$	$A_{\mathrm{FB}}^{0, c}$
CEPC	0.005	0.003	0.005	0.001	0.003
FCC-ee	-	-	-	-	-
(fitted)	A_{e}	A_{μ}	A_{τ}	A_{b}	A_{c}
CEPC	0.0003	0.003	0.0005	0.001	0.003
FCC-ee	0.0001	0.00015	0.0003	0.003	0.008

Table 1: A comparison of CEPC and FCC-ee Z-pole inputs. All uncertainties are relative (normalized to 1) except for Γ_{Z} and $\sigma_{\text {had }}$. " τ pol" denotes that the measurement is from τ polarization in $Z \rightarrow \tau^{+} \tau^{-}$. The 5 fitted asymmetry observables $\left(A_{e, \mu, \tau, b, c}\right)$ are derived from a simutanous fit of all the $A_{\mathrm{FB}}^{0,}$ observables as well as the A_{e} and A_{τ} from τ polarization.

White paper: TGC , EFT

- aTGCs (EFT) in Z/WW/ZH runs

- Combing measurements from Z/WW/ZH and top measurements
- Some study about experimental study and detector requirement needed
- Yusheng, Shu , Jiayin, Cen Zhang

Z rare decay

- Z->4I, Z->di-photons, ...

- Direct search for new physics
- Yusheng, Hao Zhang,

Exotic decays	Topologies	$n_{\text {res }}$	Models
$Z \rightarrow E+\gamma$	$Z \rightarrow \chi_{1} \chi_{2}, \chi_{2} \rightarrow \chi_{1} \gamma$	0	1A: $\frac{1}{\Lambda_{1 /}} \overline{\chi_{2}} \sigma^{\mu \nu} \chi_{1} B_{\mu \nu}$ (MIDM)
	$Z \rightarrow \chi \bar{\chi} \gamma$	0	1B: $\frac{1}{\Lambda_{1 \mathrm{~B}}^{3}} \bar{\chi} \chi B_{\mu \nu} B^{\mu \nu}$ (RayDM)
	$Z \rightarrow a \gamma \rightarrow\left(E^{\prime}\right) \gamma$	1	$1 \mathrm{C}: \frac{1}{4 \Lambda_{1 C}} a B_{\mu \nu} \tilde{B}^{\mu \nu}$ (long-lived ALP)
	$Z \rightarrow A^{\prime} \gamma \rightarrow(\bar{\chi} \chi) \gamma$	1	1D: $\epsilon^{\mu \nu \rho \sigma} A^{\prime}{ }_{\mu} B_{\nu} \partial_{\rho} B_{\sigma}$ (Wess-Zumino terms)
$Z \rightarrow E^{\prime}+\gamma \gamma$	$Z \rightarrow \phi_{d} A^{\prime}, \phi_{d} \rightarrow(\gamma \gamma), A^{\prime} \rightarrow(\bar{\chi} \chi)$	2	2A: Vector portal
	$Z \rightarrow \phi_{H} \phi_{A}, \phi_{H} \rightarrow(\gamma \gamma), \phi_{A} \rightarrow(\bar{\chi} \chi)$	2	2B: 2HDM extension
	$Z \rightarrow \chi_{2} \chi_{1}, \chi_{2} \rightarrow \chi_{1} \phi, \phi \rightarrow(\gamma \gamma)$	1	2C: Inelastic DM
	$Z \rightarrow \chi_{2} \chi_{2}, \chi_{2} \rightarrow \gamma \chi_{1}$	0	2D: MIDM
$Z \rightarrow E^{+}+\ell^{+} \ell^{-}$	$Z \rightarrow \phi_{d} A^{\prime}, A^{\prime} \rightarrow\left(\ell^{+} \ell^{-}\right), \phi_{d} \rightarrow(\bar{\chi} \chi)$	2	3A: Vector portal

White paper : R_b from Z->bb

- R_b
- B tagging and systematics study
- Bo Li, Yu Bai

Get From Mixed MC Sample	
$\frac{N_{t}}{2 N_{\text {had }}}$ $\frac{N_{t t}}{N_{\text {had }}}$$=$$R_{b} \varepsilon_{b}+R_{c} \varepsilon_{c}+\left(1-R_{b}-R_{c}\right) \varepsilon_{u d s}$ $C_{b} R_{b} \varepsilon_{b}^{2}+C_{c} R_{c} \varepsilon_{c}^{2}+C_{u d s}\left(1-R_{b}-R_{c}\right) \varepsilon_{u d s}^{2}$	R_{c}, ε_{c}, $\varepsilon_{u d s}$ C_{b}, C_{C}, $C_{u d s}$ Get from MC
$C_{b}=\frac{\varepsilon_{2 \text { jet-tagged }}}{\left(\varepsilon_{1 \text { jet-tagged }}\right)^{2}}$	

(Measured Rb-0.2158)/0.2158

	(Measured Rb-0.2158)/0.2158					
	Prob>0.6	Prob>0.70	Prob>0.80	Prob>0.90	Prob>0.95	Prob>0.99
$\varepsilon_{\mathrm{c}} \pm 10 \%$	0.55%	0.34%	0.19%	0.09%	0.05%	0.01%
$\varepsilon_{\text {uds }} \pm 10 \%$	0.21%	0.14%	0.10%	0.06%	0.04%	0.02%
$C_{b} \pm 10 \%$	10.12%	10.09%	10.08%	10.06%	10.06%	10.05%

A_{e} and $\mathrm{A}_{\boldsymbol{\tau}}$ in $\mathrm{Z}->\boldsymbol{\tau} \boldsymbol{\tau}$ ($\boldsymbol{\tau}$ polarization)

- A_{e} and A_{τ} using polarization info

(derived)	A_{e}	A_{μ}	A_{τ}	A_{b}	A_{c}
CEPC	0.0025	0.0039	0.0056	0.0027	0.0039
FCC-ee	0.0001	0.00015	0.0003	0.003	0.008

- A_{e} and A_{τ} with polarization info (from tau or from beam)

(fitted)	A_{e}	A_{μ}	A_{τ}	A_{b}	A_{c}
CEPC	0.0003	0.003	0.0005	0.001	0.003
FCC-ee	0.0001	0.00015	0.0003	0.003	0.008

Summary

－Welcome to join CEPC EWK study
－Input for ECFA（to be documented in short writeup ）
－http：／／cepcgit．ihep．ac．cn／CEPC－White－Paper／electroweak－physics
－Longer term goal for white paper
－More details study on systematics in each measur
－R＿b
－W mass
－A_{e} and A_{τ} in $\mathbb{Z}-\geqslant \tau \tau(\tau$ polarization）
－aTGCs
－Z rare decay（Direct search for new physics）

Backup: Summary of workshop

Exotic Z-decay

Exotic decays	Topologies	$n_{\text {res }}$	Models
$Z \rightarrow E t+\gamma$	$Z \rightarrow \chi_{1} \chi_{2}, \chi_{2} \rightarrow \chi_{1} \gamma$	0	1A: $\frac{1}{\Lambda_{1}} \overline{\chi_{2}} \sigma^{\mu \nu} \chi_{1} B_{\mu \nu}$ (MIDM)
	$Z \rightarrow \chi \bar{\chi} \gamma$	0	1B: $\frac{1}{\Lambda_{1 \mathrm{~B}}^{3}} \bar{\chi} \chi B_{\mu \nu} B^{\mu \nu}$ (RayDM)
	$Z \rightarrow a \gamma \rightarrow(E) \gamma$	1	$1 \mathrm{C}: \frac{1}{4 \Lambda_{1 C}} a B_{\mu \nu} \tilde{B}^{\mu \nu}$ (long-lived ALP)
	$Z \rightarrow A^{\prime} \gamma \rightarrow(\bar{\chi} \chi) \gamma$	1	1D: $\epsilon^{\mu \nu \rho \sigma} A^{\prime}{ }_{\mu} B_{\nu} \partial_{\rho} B_{\sigma}$ (Wess-Zumino terms)
$Z \rightarrow \mathscr{E}+\gamma \gamma$	$Z \rightarrow \phi_{d} A^{\prime}, \phi_{d} \rightarrow(\gamma \gamma), A^{\prime} \rightarrow(\bar{\chi} \chi)$	2	2A: Vector portal
	$Z \rightarrow \phi_{H} \phi_{A}, \phi_{H} \rightarrow(\gamma \gamma), \phi_{A} \rightarrow(\bar{\chi} \chi)$	2	2B: 2HDM extension
	$Z \rightarrow \chi_{2} \chi_{1}, \chi_{2} \rightarrow \chi_{1} \phi, \phi \rightarrow(\gamma \gamma)$	1	2C: Inelastic DM
	$Z \rightarrow \chi_{2} \chi_{2}, \chi_{2} \rightarrow \gamma \chi_{1}$	0	2D: MIDM
$Z \rightarrow E^{+}+\ell^{+} \ell^{-}$	$Z \rightarrow \phi_{d} A^{\prime}, A^{\prime} \rightarrow\left(\ell^{+} \ell^{-}\right), \phi_{d} \rightarrow(\bar{\chi} \chi)$	2	3A: Vector portal

Summary of workshop

Loops as "direct" probes

- Consider Z(->II) + H

Under T transformation without interchanging the initial and final states,

$$
\begin{aligned}
\frac{d^{3} \sigma}{d \cos \Theta d \cos \theta d \phi} & \rightarrow \underbrace{F_{1}\left(1+\cos ^{2} \theta\right)+F_{2}\left(1-3 \cos ^{2} \theta\right)+F_{3} \sin 2 \theta \cos \phi+F_{4} \sin ^{2} \theta \cos 2 \phi}_{\text {T-even }} \\
& +\underbrace{F_{5} \cos \theta+F_{6} \sin \theta \cos \phi}_{\text {T-even }} \underbrace{-F_{7} \sin \theta \sin \phi-F_{8} \sin 2 \theta \sin \phi-F_{9} \sin ^{2} \theta \sin 2 \phi}_{\text {T-odd }},
\end{aligned}
$$

Define T-odd asymmetries $\left(A_{7}, A_{8}, A_{9}\right)$ by

$$
A_{(7,8,9)} \equiv \frac{F_{(7,8,9)}}{F_{1}}, \quad A_{7} \propto \frac{N(\sin \phi>0)-N(\sin \phi<0)}{N(\sin \phi>0)+N(\sin \phi<0)} \text { etc }
$$

$$
8 / 11
$$

You can't really separate Higgs from the rest of the SM!

- $\mathcal{O}_{H \ell}=i H^{\dagger} \overleftrightarrow{D_{\mu}} H \bar{\ell}_{L} \gamma^{\mu} \ell_{L}$, $\mathcal{O}_{H \ell}^{\prime}=i H^{\dagger} \sigma^{a} \overleftrightarrow{D_{\mu}} H \bar{\ell}_{L} \sigma^{a} \gamma^{\mu} \ell_{L}$, $\mathcal{O}_{H e}=i H^{\dagger} \overleftrightarrow{D_{\mu}} H \widehat{e}_{R} \gamma^{\mu} e_{R}$
(or the ones with quarks)
- modifies gauge couplings of fermions,
- also generates hVff type contact interaction.

