Requirement & performance: CEPC CDR baseline, and the key questions to the future

Manqi Ruan

Science at CEPC-SPPC

- Tunnel ~ 100 km
- CEPC (90 250 GeV)
 - Higgs factory: 1M Higgs boson
 - Absolute measurements of Higgs boson width and couplings
 - Searching for exotic Higgs decay modes (New Physics)
 - Z & W factory: 100M W Boson, 100B 1 Tera Z boson
 - Precision test of the SM Low Energy Booster(0.4Km)

Booster(50Km

- Rare decay
- Flavor factory: b, c, tau and QCD studies
- SPPC (~ 100 TeV)

TP4

- Direct search for new physics
- Complementary Higgs measurements to CEPC g(HHH), g(Htt)
- Heavy ion, e-p collision... 01/07/19

Complementary

e+ e- Linac (240m)

IP₂

IP3

Observables: Higgs mass, CP, $\sigma(ZH)$, event rates ($\sigma(ZH, vvH)^*Br(H \rightarrow X)$), Diff. distributions

Derive: Absolute Higgs width, branching ratios, couplings

Physics Requirements

Detector:

To reconstruct all the physics objects with high efficiency, purity & resolution Homogenous & Stable enough to control the systematic

Requirements on the physics object

- Low-level
 - VTX: allows a precise flavor tagging & b/c-baryon reconstruction
 - Tracks;
 - threshold < 150 MeV (for D*, K* cascade reconstruction),
 - momentum resolution < 0.1% for H->mumu reconstruction
 - Clusters;
 - Ensure pi0 reconstruction at Z->tautau, Z pole, and potentially high energy runs
- Final State Particle
 - Lepton: Isolated, high energy muon/electrons: eff > 99% && mis-id < 1% for the Higgs recoil
 - Photon;
 - Charged/Neutral Hadrons;
- High Level Objects
 - Simple composited: Pi0, Ks, converted photons;
 - Tau;
 - Jets Massive bosons fragment into jets: **BMR < 4%**

Jets at the Higgs Signal

- SM Higgs
 - 0 jets: 3%
 - Z \rightarrow II, vv (30%); H \rightarrow 0 jets (~10%, TT, µµ, γγ, γZ/WW/ZZ \rightarrow leptonic)
 - 2 jets: 30%
 - $Z \rightarrow qq$, $H \rightarrow 0$ jets.
 - $Z \rightarrow II$, vv; $H \rightarrow 2$ jets.
 - $Z \rightarrow II$, vv; $H \rightarrow WW/ZZ \rightarrow semi-leptonic$.
 - 4 jets: 59%
 - $Z \rightarrow qq$, $H \rightarrow 2$ jets.
 - $Z \rightarrow II$, vv; $H \rightarrow WW/ZZ \rightarrow 4$ jets.
 - 6 jets: 8%
 - $Z \rightarrow qq$, $H \rightarrow WW/ZZ \rightarrow 4$ jets.
- 97% of the SM Higgsstrahlung Signal involves Jets

Jets at the Higgs Signal

- SM Higgs
 - 0 jets: 3%
 - Z→II, vv (30%); H→0 jets
 - 2 jets: 30%
 - $Z \rightarrow qq$, $H \rightarrow 0$ jets.
 - $Z \rightarrow II$, vv; $H \rightarrow 2$ jets.
 - Z→II, vv; H→WW/ZZ→semi-leptonic.
 - 4 jets: 59%
 - $Z \rightarrow qq$, $H \rightarrow 2$ jets.
 - $Z \rightarrow II$, vv; $H \rightarrow WW/ZZ \rightarrow 4$ jets.
 - 6 jets: 8%
 - $Z \rightarrow qq$, $H \rightarrow WW/ZZ \rightarrow 4$ jets.

- 1/3 of the Higgs events
 - Access to all SM Higgs decay modes
 - Doesn't need color singlet identification: at most 1 color singlet thus naturally identified

- 2/3 of the Higgs events
 - Dominate statistic of $H \rightarrow bb$, cc, gg, WW, ZZ, Z γ
 - Color singlet identification potentially a leading systematic, huge impact
- 2/3 of the events need to group the final state particles into Color-Singlet: currently via Jet Clustering-Matching (analyzed in WW/ZZ separation study ~ 50% of 4-jets event have correct pairing)

Physics benchmarks

- Higgs measurement with 2-jet event
 - qqH, Higgs $\rightarrow \tau \tau$;
 - Percentage level accuracy, sensitive probe to NP
 - qqH, Higgs→invisible;
 - Key measurement for the DM search, significant advantage V.S. LHC
 - vvH, $H \rightarrow bb$ (W fusion Xsec measurement)
 - Key input & Bottleneck for the Higgs width measurement limitation for Higgs couplings to major decay modes (bb, gg, WW, ZZ, tautau)
- Full Simulation analyses at baseline Detector
- Dedicated Fast simulation tool developed, and validated on Full Simulation result

Key physics performance: BMR

Fig. 8. (color online) Distributions of the reconstructed total visible invariant mass for $H \rightarrow bb, cc, gg$ events after event cleaning and fitted by Gaussian functions. The resolutions (sigma/mean) of the fitted results are 3.63% (*bb*), 3.82% (*cc*), and 3.75% (*gg*).

- Boson Mass resolution:
 - Characterized by the Higgs mass resolution with di-gluon final state
- Baseline reaches a BMR of 3.8%
- Fast Simulation: extract 4 momentum of the hadronic system (di-jet), smear its energy according to BMR (jet direction precision ~ 1%, negligible w.r.t energy reconstruction)

qqH, H->tautau

The recoil mass of the di-jet system is essential for the separation of ZZ background

 Considering Only ZZ background and Normalize according to full sim result (efficiency, statistics, accuracy ~ 0.9% at BMR = 3.8%)

- Similar behavior as the ZZ is the major background
- Y axis: accuracy at sigma(ZH)*Br(H->inv) = 100 fb

vvH, H->bb & total width

- $g^{2}(HXX) \sim \Gamma_{H \rightarrow XX} = \Gamma_{total}^{*}Br(H \rightarrow XX)$
- Branching ratios: determined simply by
 - $\sigma(ZH)$ and $\sigma(ZH)^*Br(H\rightarrow XX)$
- Γ_{total}: determined from:
 - − From σ (ZH) (~g²(HZZ)) and σ (ZH)*Br(H→ZZ) (~g⁴(HZZ)/Γ_{total})
 - From $\sigma(ZH)^*Br(H\rightarrow bb)$, $\sigma(vvH)^*Br(H\rightarrow bb)$, $\sigma(ZH)^*Br(H\rightarrow WW)$, $\sigma(ZH)$

A combined accuracy of 2.8% for the Higgs total width measurements; dominated by W fusion measurement (with accuracy of 2.6%)

 $\sigma(vvH)^*Br(H->bb)$: major background are ZZ and ZH (Z->vv)

Recoil mass PDF at different BMR

PS: at 240 GeV center of mass energy, the Xsec of ZH, Z->vv is 7 times larger than The W fusion (40/5.4 fb)

- Similar behavior as the ZZ is the major background
- Y axis: accuracy: at sigma(ZH)*Br(H->inv) = 100 fb

01/07/19

2-jet Higgs benchmarks at 240 GeV

	BMR = 2%	4%	6%	8%
σ(vvH, H→bb)	2.3%	2.6%	3.0%	3.4%
σ(qqH, H→inv)	0.38%	0.4%	0.5%	0.6%
σ(qqH, H→тт)	0.85%	0.9%	1.0%	1.1%

- From qqH, H->inv/tautau: BMR < 4%
- From W fusion: should pursue better BMR even up to 2%...

Performance at the CDR baseline

- Determined by
 - Detector design
 - Reconstruction algorithm
- Characterized at
 - Physics Objects
 - Higgs Signal
 - Benchmark Physics Analyses

Two classes of Concepts

- PFA Oriented concept using High Granularity Calorimeter
 - + TPC (ILD-like, Baseline)
 - + Silicon tracking (SiD-like)

- Wire Chamber + Dual Readout Calorimeter

https://indico.ihep.ac.cn/event/6618/

https://agenda.infn.it/conferenceOtherViews.py?view=standard&confld=14816

Status of simulation-performance study

	Geant4- Simulation	Digitization	Reconstructi on	Performance -Object	Performance -Benchmark
IDEA					
Full-Silicon					
APODIS					

CEPC Baseline Detector

An ILD-like detector at the CEPC

- Different collision environments/rates :
 - MDI design & Implementation: CEPC-SIMU-2017-001
- The CEPC Event rate is significantly higher than linear colliders, charged kaon id can strongly enhance the CEPC flavor physics program
 - TPC Feasibility: JINST-12-P07005 (2017)
 - Pid using TPC dEdx and ToF: Eur. Phys. J. C (2018) 78:464
- No power pulsing at CEPC detector
 - A significant reduction of the readout channel, especially the Calorimeter Granularity: JINST-13-P03010 (2018)
 - HCAL Optimization
- 3 Tesla Solenoid: requested by the Accelerator/MDI

CEPC Baseline Software

Eur. Phys. J. C (2018) 78: 426

Performance at

Tracking

Highly appreciated in flavor physics @ CEPC Z pole TPC dEdx + ToF of 50 ps

Eur. Phys. J. C (2018) 78:464

26

At inclusive Z pole sample: Conservative estimation gives efficiency/purity of 91%/94% (2-20 GeV, 50% degrading +50 ps ToF) Could be improved to 96%/96% by better detector/DAQ performance (20% degrading + 50 ps ToF) 01/07/19 CEPC Physics WS@PKU

Reconstruction of $Ks(\Lambda)$ at Z pole (Preliminary)

Table 3: K_S^0 and Λ reconstruction performance.

Particle	K_S^0	Λ	
ε _R	79.7%	65.1%	
ετ	39.8%	25.5%	
Р	89.7%	87.9%	
$\varepsilon_{\rm R} \cdot P$	0.715	0.572	
$\varepsilon_{\rm T} \cdot P$	0.357	0.224	

Taifan Zhen Statistic uncertainty of the mass/life time ~ 1 keV/0.3 ps

Photons – conversion & efficiency

In the barrel region: Roughly 6-10% of the photons converts before reaching the Calorimeter.

For the unconverted photon: A critical energy of 200 MeV is observed.

Photon: resolution

Clustering - Separation

Hang Zhao. CEPC CDR

01/07/19

Tau finding at hadronic events

an overall efficiency*purity higher than 70% is achieved for qqTT, and qqTV events

Zhigang Wu, CEPC CDR

JETS: BMS of 3.8% reached, enables Massive Boson Separation

WW sample: using µvqq sample, Plot: the visible mass without the muon CEPC-RECO-2017-002 (DocDB id-164), CEPC-RECO-2018-002 (DocDB id-164),

01/07/19

Peizhu Lai & CEPC CDR

CEPC Physics WS@PKU

Eur. Phys. J. C (2018) 78: 426

Jet Energy Scale & Resolution

- JER ~ 3.5% 5.5% for E ~ 20 100 GeV Jets
- Both Superior to LHC experiments by 3-4 times

Peizhu LAI

Separation of full hadronic WW-ZZ event

- Low energy jets! (20 120 GeV)
- Typical multiplicity ~ o(100)
- WW-ZZ Separation: determined by
 - Intrinsic boson mass/width
 - Jet confusion from color single reconstruction jet clustering & pairing
 - Detector response

01/07/19

Jet confusion: the leading term

- Separation be characterized by
- Final state/MC particles are clustered into Reco/Genjet with ee-kt, and paired according to chi2
- WW-ZZ Separation at the inclusive sample:
 - Intrinsic boson mass/width lower limit: Overlapping ratio of 13%
 - + Jet confusion Genjet: Overlapping ratio of 53%
 - + Detector response Recojet: Overlapping ratio of 58%

$$\chi^2 = \frac{(M_{12} - M_B)^2 + (M_{34} - M_B)^2}{\sigma_B^2}$$

overlapping ratio = $\sum min(a_i, b_i)$

2

bins

Reconstructed mass of the two di-jet system

Equal mass condition |M12 - M34| < 10 GeV: At the cost of half the statistic, the overlapping ratio can be reduced from 58%/53% to 40%/27% for the Reco/Genjet

Flavor Tagging

- Using LCFIPlus
 Package from ilcsoft
- At Higgs->2 jet samples:
 - Clear separation between different decay modes
- Typical Performance at Z pole sample:
 - B-tagging: eff/purity = 80%/90%
 - C-tagging: eff/purity = 60%/60%

Physics Objects

Applied on Higgs physics, et.al

Precision Higgs Physics at CEPC

Initial assessments of Higgs physics potential at the CEPC based on the white paper (to be submitted)

Chinese Physics C Vol. XX, No. X (201X) 010201

Precision Higgs Physics at the CEPC^{*}

Fenfen An^{4,21} Yu Bai⁹ Chunhui Chen²¹ Xin Chen⁵ Zhenxing Chen³ Joao Guimaraes da Costa⁴
 Zhenwei Cui³ Yaquan Fang^{4,6} Chengdong Fu⁴ Jun Gao¹⁰ Yanyan Gao³⁰ Yuanning Gao⁵
 Shao-Feng Ge^{15,27} Jiayin Gu¹³ Fangyi Guo^{1,4} Jun Guo^{10,11} Tao Han^{5,29} Shuang Han⁴
 Hong-Jian Ha^{10,11} Xianke He¹⁰ Xiao-Gang He^{10,11} Jifeng Hu¹⁰ Shih-Chich Hsu³⁰ Shan Jin⁸
 Maoqiang Jing^{4,7} Ryuta Kiuchi⁴ Chia-Ming Kuo¹⁹ Pei-Zhu Lai¹⁹ Boyang Li⁵ Congqiao Li³ Gang Li⁴
 Haifeng Li¹⁰ Shu Li^{10,11} Tong Li¹² Qiang Li³ Hao Liang^{4,6} Zhijun Liang⁴
 Libo Liao⁴ Bio Liu^{4,21} Jianbei Liu¹ Tao Liu¹⁴ Zhen Liu^{24,28} Xinchou Lou^{4,6,31} Lianliang Ma¹²
 Bruce Mellado¹⁷ Xin Mo⁴ Mila Pandurovic¹⁶ Jianning Gua²² Zhuoni Qian¹⁸
 Nikolaos Rompotis²⁰ Manqi Ruan⁴ Alex Schuy³⁰ Lian-Yao Wang^{4,6} Yuqian Wei⁴
 Yuqian Yang^{10,11} Weiming Yao²⁶ Dan Yu⁴ Shuil Zhang^{4,6} Zhaoru Zhaoru Zhaoru
 Maiju Yang^{10,11} Weiming Yao²⁶ Xianphu Zhao⁴ Ning Zhou¹⁰

https://arxiv.org/pdf/1810.09037.pdf

Requirements on the physics object

- Low-level
 - VTX: allows a precise flavor tagging & b/c-baryon reconstruction
 - Tracks;
 - threshold < 150 MeV (for D*, K* cascade reconstruction),
 - momentum resolution < 0.1% for H->mumu reconstruction
 - Clusters;
 - ensures pi0 reconstruction at Z->tautau, Z pole, and potentially high energy runs
- Final State Particle
 - Lepton: Isolated, high energy muon/electrons: eff > 99% && mis-id < 1% for the Higgs recoil
 - Photon;
 - Charged/Neutral Hadrons;
- High Level Objects
 - Simple composited: Pi0, Ks/Lambda, converted photons;
 - Tau;
 - Jets Massive bosons fragment into jets: **BMR < 4%**

Key questions: quantification & control

- Flavor Physics:
 - The physics impact of lowing the thresholds (Pt/energy for charged tracks/photons): essential for flavor physics
 - Object finding inside the jets (for the flavor physics), i.e., tau finding inside a b-jet
 - Requirement for the VTX reconstruction
- Jet Clustering & Color singlet: QCD, Higgs & EW
 - How to count, and match precisely the final state jets
- Further optimization: Optimal configuration
- Requirement on the stability & monitoring: EW precisions
- Many questions can start with CDR sample analysis!
 CEPC Physics WS@PKU

Summary

- CEPC, a super Higgs/W/Z factory, requires high efficiency, purity, and precision reconstruction of all key physics objects
 - Tracker & Calorimeter intrinsic resolution: better is better!
 - **BMR < 4%** is crucial: di-jet recoil mass at qqH events
- CEPC baseline fulfills the physics requirements especially for the Higgs measurements, a reasonable starting point for future performance & optimization study
 - All key physics objects tamed
 - Clear Higgs signature in all SM Higgs decay modes
 - 0.1% 1% relative error in Higgs coupling measurements
- Future works:
 - To quantify more precisely the requirement on EW, QCD & Flavor: Digest the CDR samples...
 - Specify more benchmarks, and investigate into more innovative designs
 - Your input & contribution

backup

Separation of full hadronic WW-77 event

The CEPC Baseline could separate efficiently the WW-ZZ with full hadronic final state.

Critical to develop color singlet reconstruction: improve from the naive Jet clustering & pairing.

Quantified by differential overlapping ratio.

Control of ISR photon/neutrinos from heavy flavor jet is important.

Pheno-studies: EFT & Physics reach

The Physics reach could be largely enhanced if the EW measurements is combined With the Higgs measurements (in the EFT)

01/07/19

Pheno-studies: High order corrections

$\sqrt{e} \left(C_{eV} \right)$		LO (fb)	NLO Weak (fb)		NNLO mixed electroweak-QCD (fb)			
\sqrt{s} (GeV)		$\sigma^{(0)}$	$\sigma^{(lpha)}$	$\sigma^{(0)} + \sigma^{(lpha)}$	$\sigma_Z^{(lpha lpha_s)}$	$\sigma_{\gamma}^{(lpha lpha_s)}$	$\sigma^{(lpha lpha_s)}$	$\sigma^{(0)} + \sigma^{(\alpha)} + \sigma^{(\alpha \alpha_s)}$
240	Total	223.14	6.64	229.78	2.42	0.008	2.43	232.21
	\mathbf{L}	88.67	3.18	91.86	0.96	0.003	0.97	92.82
	Т	134.46	3.46	137.92	1.46	0.005	1.46	139.39
250	Total	223.12	6.08	229.20	2.42	0.009	2.42	231.63
	\mathbf{L}	94.30	3.31	97.61	1.02	0.004	1.02	98.64
	Т	128.82	2.77	131.59	1.40	0.005	1.40	132.99

Correction at 1% level with NNLO calculation.

Q.Sun, et.al https://arxiv.org/pdf/1609.03995.pdf

 Lots of efforts needed to correctly interpret the measurements at CEPC 01/07/19 CEPC Physics WS@PKU

Pi0: efficiency & mass resolution (Preliminary)

Arbor parameter & Photon Id parameters need further optimization...

Higgs benchmark analyses

