

Precise measurement of m_W and Γ_W using threshold scan method

Peixun Shen, Paolo Azzurri, Zhijun Liang, Gang Li, Chunxu Yu NKU, INFN Pisa, IHEP

CEPC physics workshop 2019/7/1-5, PKU

Workshop of CEPC, 1-5, July, PKU

➤ Motivation

- ➤ Methodology
- ➤Statistical and systematic uncertainties
- Data taking schemes
- ➤ Summary

Motivation

- The m_W plays a central role in precision EW measurements and in constraint on the SM model through global fit.
- The direct measurement suffers the large systematic uncertainty, such as radiative correction, EW corrections, modeling of hadronization.

For the threshold scan method, the precision is limited by the statistics of data and the accelerator performance (this work).

Methodology

≻ Why?

$$\sigma_{WW}(m_W, \Gamma_W, \sqrt{s}) = \frac{N_{obs}}{L\epsilon P} \qquad (P = \frac{N_{WW}}{N_{WW} + N_{bkg}})$$

so m_W , Γ_W can be obtained by fitting the N_{obs} , with the theoretical formula σ_{WW}

➢ How?

In general, these uncertainties are dependent on \sqrt{s} , so it is a optimization problem

when considering the data taking.

≻If ..., then?

With the configurations of $L, \Delta L, \Delta E \dots$, we can obtain: $m_W \sim ? \Gamma_W \sim ?$

Workshop of CEPC, 1-5, July, PKU

Theoretical Tool

- → The σ_{WW} is a function of \sqrt{s} , m_W and Γ_W , which is calculated with the GENTLE package in this work
- The ISR correction is also calculated by convoluting the Born cross sections with QED structure function, with the radiator up to NL O(α²) and O(β³)

Statistical and systematic uncertainties

Workshop of CEPC, 1-5, July, PKU

Statistical uncertainty

$$\begin{split} > \Delta \sigma_{WW} &= \sigma_{WW} \times \frac{\Delta N_{WW}}{N_{WW}} = \sigma_{WW} \times \frac{\sqrt{N_{WW} + N_{bkg}}}{N_{WW}} \\ &= \sqrt{\frac{\sigma_{WW}}{L\epsilon P}} \qquad (P = \frac{N_{WW}}{N_{WW} + N_{bkg}}) \\ > \Delta m_W &= \left(\frac{\partial \sigma_{WW}}{\partial m_W}\right)^{-1} \times \Delta \sigma_{WW} = \left(\frac{\partial \sigma_{WW}}{\partial m_W}\right)^{-1} \times \sqrt{\frac{\sigma_{WW}}{L\epsilon P}} \\ > \Delta \Gamma_W &= \left(\frac{\partial \sigma_{WW}}{\partial \Gamma_W}\right)^{-1} \times \Delta \sigma_{WW} = \left(\frac{\partial \sigma_{WW}}{\partial \Gamma_W}\right)^{-1} \times \sqrt{\frac{\sigma_{WW}}{L\epsilon P}} \end{split}$$

With $L=3.2ab^{-1}$, $\epsilon=0.8$, P=0.9: $\Delta m_W=0.6$ MeV, $\Delta \Gamma_W=1.4$ MeV (individually)

Workshop of CEPC, 1-5, July, PKU

Statistical uncertainty

> When there are more than one data point, we can measure both m_W and Γ_W . > With the chisquare defined as:

$$\chi^2 = \sum_i \frac{(N_{\text{fit}^i} - N_{\text{obs}}^i)^2}{N_{\text{obs}}^i} = \frac{(\mathcal{L}\epsilon P)^i (\sigma_{\text{fit}}^i - \sigma_{\text{obs}}^i)^2}{\sigma_{\text{obs}}^i}$$

the error matrix is in the form:

$$V = \frac{1}{2} \times \begin{pmatrix} \frac{\partial^2 \chi^2}{\partial m_W^2} & \frac{\partial^2 \chi^2}{\partial m_W \partial \Gamma_W} \\ \frac{\partial^2 \chi^2}{\partial m_W \partial \Gamma_W} & \frac{\partial^2 \chi^2}{\partial m_W^2} \end{pmatrix}^{-1} = \sum_i \begin{pmatrix} \frac{(\pounds \epsilon P)^i}{\sigma_{obs}^i} (\frac{\partial \sigma}{\partial m_W})^2 & \frac{(\pounds \epsilon P)^i}{\sigma_{obs}^i} \frac{\partial \sigma}{\partial m_W} \frac{\partial \sigma}{\partial \Gamma_W} \\ \frac{(\pounds \epsilon P)^i}{\sigma_{obs}^i} \frac{\partial \sigma}{\partial m_W} \frac{\partial \sigma}{\partial \Gamma_W} & \frac{(\pounds \epsilon P)^i}{\sigma_{obs}^i} (\frac{\partial \sigma}{\partial m_W})^2 \end{pmatrix}^{-1}$$

$$\gg \text{When the number of fit parameter reduce to 1:}$$

$$\Delta m_W = \left(\frac{\partial \sigma_{WW}}{\partial m_W}\right)^{-1} \times \Delta \sigma_{WW} = \left(\frac{\partial \sigma_{WW}}{\partial m_W}\right)^{-1} \times \sqrt{\frac{\sigma_{WW}}{L\epsilon P}}$$

Statistical uncertainty

Systematic uncertainty

Energy calibration uncertainty

 \succ With ΔE , the total energy becomes:

$$E = G(E_p, \Delta E) + G(E_m, \Delta E)$$

$$\blacktriangleright \Delta m_W = \frac{\partial m_W}{\partial \sigma_{WW}} \frac{\partial \sigma_{WW}}{\partial E} \Delta E$$

The Δm_W will be large when ΔE increase, and **almost independent** with \sqrt{s} .

Energy spread uncertainty

 \succ With E_{BS} , the σ_{WW} becomes:

$$\sigma_{WW}(E) = \int_0^\infty \sigma_{WW}(E') \times G(E, E') dE'$$
$$= \int \sigma(E') \times \frac{1}{\sqrt{2\pi}\delta_E} e^{\frac{-(E-E')^2}{2\sigma_E^2}} dE'$$

 $\succ \sigma_E + \Delta \sigma_E$ is used in the simulation, and σ_E is for the fit formula.

> The m_W insensitive to δ_E when taking data around 162.3 GeV

Background uncertainty

The effect of background are in two different ways

1. Stat. part:
$$\Delta m_W(N_B) = \frac{\partial m_W}{\partial \sigma_{WW}} \cdot \frac{\sqrt{L\epsilon_B \sigma_B}}{L\epsilon}$$

2. Sys. part:
$$\Delta m_W(\sigma_B) = \frac{\partial m_W}{\partial \sigma_{WW}} \cdot \frac{L\epsilon_B \sigma_B}{L\epsilon} \cdot \Delta \sigma_B$$

With L=3.2ab⁻¹, $\epsilon_B \sigma_B = 0.3$ pb, $\Delta \sigma_B = 10^{-4}$:

 $\Delta m_W(N_B) \sim 0.2$ MeV, and $\Delta m_W(\sigma_B)$ is about an order of magnitude smaller, which can be neglected.

Correlated sys. uncertainty

- > The correlated sys. uncertainty includes: ΔL , $\Delta \epsilon$, $\Delta \sigma_{WW}$...
- Since $N_{obs} = L \cdot \sigma \cdot \epsilon$, these uncertainties affect σ_{WW} in same way.
- > We use the total correlated sys. uncertainty in data taking optimization:

$$\delta_c = \sqrt{\Delta L^2 + \Delta \sigma_{WW}^2 + \Delta \epsilon^2}$$

$$\Delta m_W = \frac{\partial m_W}{\partial \sigma_{WW}} \sigma_{WW} \cdot \delta_c , \ \Delta \Gamma_W = \frac{\partial \Gamma_W}{\partial \sigma_{WW}} \sigma_{WW} \cdot \delta_c$$

Correlated sys. uncertainty

$$\Delta m_W = \frac{\partial m_W}{\partial \sigma_{WW}} \sigma_{WW} \cdot \delta_c$$

Two ways to consider to effect:

(a) Gaussian distribution $\sigma_{WW} = G(\sigma_{WW}^0, \delta_c \cdot \sigma_{WW}^0)$ (b) Non-Gaussian (will cause shift)

 $\sigma_{WW} = \sigma_{WW}^0 \times (1 + \delta_c)$

With $\delta_c = +1.7 \cdot 10^{-4}$ at 161.2GeV $\Delta m_W \sim 0.3 MeV (3 MeV)$

Workshop of CEPC, 1-5, July, PKU

Correlated sys. uncertainty

To consider the correlation, the scale factor method is used,

$$\chi^{2} = \sum_{i}^{n} \frac{(y_{i} - h \cdot x_{i})^{2}}{\delta_{i}^{2}} + \frac{(h-1)^{2}}{\delta_{c}^{2}},$$

where y_i , x_i are the true and fit results, h is a free parameter, δ_i and δ_c are the independent and correlated uncertainties.

For the Gaussian consideration, the scale factor can reduce the effect.

For the non-Gaussian case, the shift of the m_W is controlled well

Data taking scheme

Taking data at one point (just for m_W)

There are two special energy points :

> The one which most statistical sensitivity to m_W :

```
\Delta m_W(stat.) ~0.59 MeV at E=161.2 GeV
```

(with $\Delta \Gamma_W$ and ΔE_{BS} effect)

≻ The one Δm_W (stat)~0.68 MeV at $E \approx 162.3$ GeV

(with small $\Delta \Gamma_W$, ΔE_{BS} effects)

With $\Delta L (\Delta \sigma_{WW}, \Delta \epsilon, \Delta \sigma_B) < 10^{-4}, \Delta E = 0.7 \text{MeV},$ $\Delta \sigma_E = 0.1, \Delta \Gamma_W = 42 \text{MeV})$

\sqrt{s} (GeV)	161.2	162.3	
Е	0.36	0.37	
σ_{E}	0.20	-	
σ_B	0.20	0.19	
δ_c	0.29	0.38	
Γ_{W}	8.00	-	
Stat.	0.59	0.68	
Δm_W (MeV)	8.04	0.88	

Taking data at two energy points

≻To measure Δm_W and $\Delta \Gamma_W$, we scan the energies and the luminosity fraction of the two data points:

1. $E_1, E_2 \in [155, 165]$ GeV, $\Delta E = 0.1$ GeV

2.
$$F \equiv \left(\frac{L_1}{L_2}\right) \in (0, 1), \quad \Delta F = 0.05$$

≻We define the object function: $T = m_W + 0.1\Gamma_W$ to optimize the scan parameters (assuming m_W is more important than Γ_W).

Taking data at two energy points

156

* F=0.1

+ F=0.2

▲ F=0.3

F=0.4

• F=0.5

F=0.6

F=0.7

▲ F=0.8

F=0.9

 $\Delta \sigma_E = 0.01$

AT MeV

- \succ The 3D scan is performed, and 2D plots are used to illustrate the optimization results;
- \succ When draw the ΔT change with one parameter, another is fixed with scanning of the third one;
- \succ E₁=157.5 GeV, E₂=162.5 GeV (around $\frac{\partial \sigma_{WW}}{\partial \Gamma_W} = 0$, $\frac{\partial \sigma_{WW}}{\partial E_{RS}} = 0$) and F=0.3 are taken as the result.

(MeV)	E	σ_E	σ_B	δ_c	Stat.	Total
Δm_W	0.38	-	0.24	0.36	0.81	0.99
$\Delta\Gamma_W$	0.54	0.56	1.54	0.27	2.72	3.23

Workshop of CEPC, 1-5, July, PKU

Taking data at three energy points

E₂=162 GeV

E₃=161 GeV

E₁=157.5 GeV

F₂=0.5

 $F_1=0.1$ $F_1=0.2$

 $F_1 = 0.3$ $F_1 = 0.4$

C=0.5

=0.6

,=0.7

 $F_{1}^{1}=0.8$

 $\tilde{F}_{1}^{1}=0.9$

The procedure of three points optimization is similar to two points

shenpx@mail.nankai.edu.cn

0.8

Summary

- > The precise measurement of m_W (Γ_W) is studied (threshold scan method)
- Different data taking schemes are investigated, based on the stat. and sys. uncertainties analysis.
- \succ With the configurations :

 $\Delta L, \Delta \sigma_{WW}, \Delta \epsilon, \Delta \sigma_B < 10^{-4}$ $\sigma_E = 1 \times 10^{-3}, \Delta E = 0.7 \text{MeV}$ $\Delta \Gamma_W = 42 \text{MeV}, \Delta \sigma_E = 0.01$

Data-taking	mass or width	$\delta_{\rm stat}$ (MeV)	$\delta_{\rm sys}$ (MeV)			Total (MeV)	
scheme	mass of width		ΔE	$\Delta \sigma_E$	δ_B	δ_c	10tar(mev)
One point	Δm_W	0.68	0.37	-	0.19	0.38	0.88
Two points	Δm_W	0.81	0.38	-	0.24	0.36	0.99
	$\Delta \Gamma_W$	2.72	0.54	0.56	1.54	0.27	3.23
Three points	Δm_W	0.81	0.30	-	0.25	0.32	0.95
	$\Delta \Gamma_W$	2.73	0.52	0.55	1.55	0.20	3.24

Thank you!

Backup Slides

Workshop of CEPC, 1-5, July, PKU

The systematic uncertainties

> The stat. uncertainty of background:

 $\Delta \sigma_{WW} (\Delta N_B^{stat}) = \frac{\sqrt{L\epsilon_B \sigma_B}}{L\epsilon \sigma_{WW}}$ with $L = 3.2ab, \epsilon = 0.72, \epsilon_B \sigma_B = 0.5pb, \sigma_{WW} = 3pb:$ $\Delta \sigma_{WW} (\Delta N_B^{stat}) \sim 1.8 \times 10^{-4}$

> The sys. uncertainty of σ_B :

$$\Delta \sigma_{WW}(\Delta \sigma_B) = \frac{L\epsilon_B \sigma_B \times 10^{-4}}{L\epsilon \sigma_{WW}} \sim 2.3 \times 10^{-4}$$

> The sys. uncertainties of L, ϵ :

 $\Delta \sigma_{WW} = 1 \times 10^{-4}$

The sys. uncertainty of σ_B is about a order smaller, so the correlation can be neglected and taken as the point-to-point uncertainty. From this point of view, the scale factor method (χ_3^2) is recommended to use, which means at least three energy points is needed.

Paolo's talk :

5

https://indico.cern.ch/event/669194/contributions/2750352/attachments/15430 80/2420706/ECM4W.pdf

decay	efficiency	purity	bkg [LEP1996]
lvlv	70-80%	80-90%	50fb (ττ,γγ→ττ,Ζγ*→ννΙΙ)
evqq	85%	~90%	30fb (qq, Zee, $Z\gamma^*$) -10fb (Wev)
uvqq	90%	~95%	10fb (Ζγ [*] ,qq)
τνqq	50%	80-85%	50fb (qq, Ζγ [*])
qqqq	90%	~90%	~ 200fb (qq (qqqq,qqgg))

OPAL's results: http://inspirehep.net/record/533109 With L = 10 pb, the effective cross section $\epsilon_B \sigma_B \sim 0.5 pb$

Selection	Expected signal	Expected background	Observed
$W^+W^- \rightarrow q\bar{q}q\bar{q}$	9.6 ± 1.0	3.44 ± 0.39	14
$W^+W^- \rightarrow q \overline{q} e \overline{\nu}_e$	3.89 ± 0.44	0.18 ± 0.27	3
$W^+W^- \rightarrow q\bar{q}\mu\bar{\nu}_{\mu}$	4.19 ± 0.46	0.27 ± 0.15	2
$W^+W^- \rightarrow q\bar{q}\tau\bar{\nu}_{\tau}$	2.32 ± 0.28	0.96 ± 0.34	7
$W^+W^- \rightarrow \ell^+ \nu_\ell \ell'^- \overline{\nu}_{\ell'}$	2.58 ± 0.28	$0.19^{+0.12}_{-0.04}$	2
Combined	22.6 ± 2.4	5.0 ± 0.6	28

Covariance matrix method

$$\succ \qquad \qquad y_i = \frac{n_i}{\epsilon}, \ v_{ii} = \sigma_i^2 + y_i^2 \sigma_f^2$$

where σ_i is the stat. error of n_i , σ_f is the relative error of ϵ

The correlation between data points *i*, j contributes to the off-diagonal matrix element v_{ij} :

Then we minimize: $\chi_1^2 = \eta^T V^{-1} \eta$

For this method, The biasness is uncontrollable (MO Xiao-Hu HEPNP 30 (2006) 140-146) H. J. Behrend et al. (CELLO Collaboration)Phys. Lett. B 183 (1987) 400D'Agostini G. Nucl. Instrum. Meth. A346 (1994)

$$V = \begin{pmatrix} \sigma_1^2 + y_1^2 \sigma_f^2 & y_1 y_2 \sigma_f^2 & \cdots & y_1 y_n \sigma_f^2 \\ y_2 y_1 \sigma_f^2 & \sigma_2^2 + y_2^2 \sigma_f^2 & \cdots & y_2 y_n \sigma_f^2 \\ \vdots & \vdots & \ddots & \vdots \\ y_n y_1 \sigma_f^2 & y_n y_2 \sigma_f^2 & \cdots & \sigma_n^2 + y_n^2 \sigma_f^2 \end{pmatrix}$$

$$\eta = \begin{pmatrix} y_1 - k_1 \\ y_2 - k_2 \\ \vdots \\ y_n - k_n \end{pmatrix}$$

Scale factor method

> This method is used by introducing a free fit parameter to the χ^2 :

$$\chi_2^2 = \sum_i \frac{(fy_i - k_i)^2}{\sigma_i^2} + \frac{(f-1)^2}{\sigma_f^2}$$

Brandelik R et al(TASSO Collab.). Phys. Lett., 1982, B113: 499—508; Brandelik R et al(TASSO Collab.). Z. Phys., 1980, C4: 87—93 Bartel W et al(JADE Collab.). Phys. Lett., 1983, B129: 145—152

 σ_i includes stat. and uncorrelated sys errors, σ_f are the correlated errors. D'Agostini G. Nucl. Instrum. Methods, 1994, A346: 306– 311 The equivalence of this form and the one from matrix method is proved in : MO Xiao-Hu HEPNP 30 (2006) 140-146.

Both the matrix and the factor approach have bias, which may be considerably striking when the data points are quite many or the scale factor is rather large.

According to ref: MO Xiao-Hu HEPNP 31 (2007) 745-749, the unbiased χ^2 is constructed as:

$$\chi_3^2 = \sum_i \frac{(y_i - gk_i)^2}{\sigma_i^2} + \frac{(g-1)^2}{\sigma_f^2} \text{ (used in our previous results)}$$

The central value from χ_2^2 can be re-scaled, the relative error is still larger than those from χ_3^2 estimation.