(Brief) Review of Electroweak Measurements at the LHC

Yusheng Wu

Modern Physics Department & State Key Laboratory for Particle Detection and Electronics, USTC

CEPC Physics Workshop, Peking University, 2019.07.01 – 07.05

Often, similar results have been obtained by ATLAS and CMS; this talk picks ATLAS results for demonstration due to personal biases

SM Measurements at the LHC

This talk covers physics with single or multiple bosons

Methodology

SM alternatives or extensions ...

QCD + EW interactions

Measurements (indirect searches)

=> optimized phase space for precision test of the SM

Direct searches

=> optimized phase space for searching for BSM signals of particular types

Been carried out in a vast variety of final states and phase spaces

<u>As of today, no clear sign of BSM</u> <u>was found</u>

Expedition will continue with O(100) to O(1000) fb⁻¹ of data

Fiducial and Total cross sections

$$\sigma_{fid} = \frac{N_{obs} - N_{bkg}}{C \cdot \mathcal{L}}, \ \sigma_{tot} = \frac{N_{obs} - N_{bkg}}{A \cdot C \cdot \mathcal{L} \cdot Br}$$

- Perform measurements in a fiducial phase space close to selection criteria at reconstruction
 - Minimal extrapolation dependence
- ✤ In order to report σ_{tot} , a extrapolation is needed to correct for acceptance from σ_{fid}

Differential measurements

- \odot Bin migration due to detector resolution
 - Unfolding techniques

\odot Unfolded spectra directly comparable to MC prediction

Boson

- Precision handle for detector calibration, studies of QCD (PDF etc.) and SM parameters, as well as probe of BSM physics
- At the LHC, W/Zs are studied with their leptonic decays, hadronic channels are infeasible due to large backgrounds

Diboson

- Typical production σ at LHC: O(fb) O(10²pb)
- Multiple diagrams contribute and interfere; delicate cancellation among diagrams restores unitarity
- Self-interactions are direct consequence of non-Abelian SU(2) x U(1) gauge symmetry
- Higgs contribution due to EWSB
- Complex final state system (multiple leptons or jets); Handles to suppress backgrounds
- Large high-order QCD corrections and nontrivial contribution from gluons
- Many channels not thoroughly explored in past experiments; many new possibilities

Tree-level qq->VV Higgs

V Higgs contributes at O(α_s^2)

VV Scattering and VVV

✤ Probe EWSB through longitudinal VV→VV scattering

- \circ SM Higgs boson unitarizes SM VV scattering cross-section at high \hat{s}
- Sensitive to anomaly in EWSB or new physics resonance in the production

Production of VV scattering and VVV

- Unique channels to study four boson self-interaction and search for new physics via aQGCs
- Relative rare process \rightarrow Less studied in past experiments

m

Key Ingredients

Efficient data-taking and reasonable trigger thresholds

Single $e/\mu \sim 25$ GeV; Diphoton ~ 20 GeV; Jet ~ 400 GeV; plus multi-object triggers...

"Pile – up" effects

Good Precision for object measurements:

Percent or sub-percent precision with careful detector calibrations

Achievements So Far – Triumph of the SM

14 Orders of magnitude for production σ

500+ explored phase spaces

<1%

best precision achieved

9 TeV - m(jj)

highest probed energy for hard scattering

More ATLAS results seen under <u>https://twiki.cern.ch/twiki/bin/view/AtlasPublic/</u> CMS results under http://cms-results.web.cern.ch/

7/5/2019

Highlights of EW Measurements

- Single boson and SM parameters
- Diboson production
- Triboson production
- ***** Vector-boson scattering

W Mass Measurement at 7 TeV

Template fits to both pT(l) and mT(W)

- => recoil and lepton measurements constrained from Z boson
- => scrutiny of theory uncertainties
- => two variables complementary to each other

Already with great precision, further improvement with single digits will be challenging!

 $m_W = 80370 \pm 7 \text{ (stat.)} \pm 11 \text{ (exp. syst.)} \pm 14 \text{ (mod. syst.)} \text{ MeV}$ e: 7, μ : 6, recoil: 3, bkg: 5 QCD:8, EW:6, PDF:9

Y. Wu

W Mass Measurement at 7 TeV

Weak Mixing Angle

EPJC 78 (2018) 701 ATLAS-CONF-2018-037

Already pretty precise!

7/5/2019

with uncertainties

Weak Mixing Angle

Channel	ee_{CC}	$\mu\mu_{CC}$	ee_{CF}	$ee_{CC} + \mu\mu_{CC}$	$ee_{CC} + \mu\mu_{CC} + ee_{CF}$
Total	65	59	42	48	34
Stat.	47	39	29	30	21
Syst.	45	44	31	37	27
	Uncertainties in measurements				
PDF (meas.)	7	7	7	7	4
p_{T}^{Z} modelling	< 1	< 1	1	< 1	< 1
Lepton scale	5	4	6	3	3
Lepton resolution	3	1	3	1	2
Lepton efficiency	1	1	1	1	1
Electron charge misidentification	< 1	0	< 1	< 1	< 1
Muon sagitta bias	0	4	0	2	1
Background	1	1	1	1	1
MC. stat.	25	22	18	16	12
	Uncertainties in predictions				
PDF (predictions)	36	37	21	32	22
QCD scales	5	5	9	4	6
EW corrections	3	3	3	3	3

Example from ATLAS: PDF, lepton reconstruction, MC leading uncertainties

W/Z + jets

Not really targeting for an EW measurement, but very important!

Diboson Measurements – Started from O(10) Events

PRL 107 (2011) 041802

Since 2010

We pursued for the "reestablishment" of the SM at the LHC

Diboson Measurements

Hitting 5% precision in measurements,

Confronting theoretical predictions at NNLO in QCD and NLO in EW Good sensitivity to neutral TGCs, w.r.t. the charged-lepton decays of Z

Parameter	Limit 95% CL				
	Measured	Expected			
h_3^γ	$(-3.7 \times 10^{-4}, 3.7 \times 10^{-4})$	$(-4.2 \times 10^{-4}, 4.3 \times 10^{-4})$			
h_3^Z	$(-3.2 \times 10^{-4}, 3.3 \times 10^{-4})$	$(-3.8 \times 10^{-4}, 3.8 \times 10^{-4})$			
h_4^γ	$(-4.4 \times 10^{-7}, 4.3 \times 10^{-7})$	$(-5.1 \times 10^{-7}, 5.0 \times 10^{-7})$			
h_4^Z	$(-4.5 \times 10^{-7}, 4.4 \times 10^{-7})$	$(-5.3 \times 10^{-7}, 5.1 \times 10^{-7})$			

Greatly improved on the previous limits

Sensitive to many interesting physics: ZZ, Higgs, off-shell Higgs, and new physics

Inclusive 4I Lineshape

□ Sensitive to many interesting physics: ZZ, Higgs, off-shell Higgs, and new physics

- Mass range 80 1000 GeV
- Can be interpreted to constrain offshell Higgs, gluon-gluon production
- $Br(Z \rightarrow 4I) = (4.7 + / 0.4) \times 10^{-6}$,

ZZ→llvv

Complementary to four charged leptons, but strong in searching for aTGCs, due to larger branching ratio

Carefully optimized to gain precision in those difficult channels, yielding a best sensitivity to neutral couplings w.r.t. ZZ

VBF, VBS, Triboson

VBF, VBS, and T	Triboson Cross S	ection Measurement	S Status: March 2019	∫£dt [fb ⁻¹]	Reference
γγγ	$\sigma = 72.6 \pm 6.5 \pm 9.2$ fb (data) MG5_aMCNLO (theory)			20.2	PLB 781 (2018) 55
Ζγγ→ℓℓγγ	$\sigma = 5.07 + 0.73 - 0.68 + 0.42 - 0.39 \text{ (b (data)} \\ \text{MCFM NLO (theory)}$	ATLAS Preliminary	▲	20.3	PRD 93, 112002 (2016)
$-[n_{jet} = 0]$	σ = 3.48 + 0.61 - 0.56 + 0.3 - 0.26 fb (data) MCFM NLO (theory)		1	20.3	PRD 93, 112002 (2016)
$W\gamma\gamma \rightarrow \ell \nu\gamma\gamma$	$\sigma = 6.1 \pm 1.1 - 1 \pm 1.2$ fb (data) MCFM NLO (theory)	Hull 1,2 $\sqrt{5} = 7,0,13$ TeV		20.3	PRL 115, 031802 (2015)
$-[n_{jet} = 0]$	$\sigma = 2.9 + 0.8 - 0.7 + 1 - 0.9$ fb (data) MCFM NLO (theory)		▲	20.3	PRL 115, 031802 (2015)
$WW\gamma \rightarrow e\nu\mu\nu\gamma$	$\sigma = 1.5 \pm 0.9 \pm 0.5 \text{ fb (data)} \\ \text{VBFNLO+CT14 (NLO) (theory)}$			20.2	EPJC 77, 646 (2017)
$\Lambda / \Lambda / \Lambda / (tot)$	$\sigma = \begin{array}{c} 0.68 + 0.16 - 0.15 + 0.16 - 0.15 \text{ pb (data)} \\ \text{Sherpa 2.2.2 (theory)} \end{array}$			79.8	STDM-2017-22
VV VV VV , (tot.)	$\sigma = 230 \pm 200 + 150 - 160 \text{ fb (data)} \\ \text{Madgraph5 + aMCNLO (theory)}$	A		20.3	EPJC 77, 141 (2017)
– WWW <i>→ℓvℓv</i> jj	$\sigma = \underbrace{0.24 + 0.39 - 0.33 \pm 0.19}_{\mbox{Madgraph5} + \mbox{aMCNLO (theory)}} \label{eq:stars} fb \ (data)$			20.3	EPJC 77, 141 (2017)
$-WWW \rightarrow \ell \nu \ell \nu \ell \nu$	$\sigma = \begin{array}{c} 0.31 + 0.35 - 0.33 + 0.32 - 0.35 \text{ fb (data)} \\ \text{Madgraph5 + aMCNLO (theory)} \end{array}$	▲		20.3	EPJC 77, 141 (2017)
WWZ , (tot.)	$\sigma = 0.49 \pm 0.14 + 0.14 - 0.13$ pb (data) Sherpa 2.2.2 (theory)			79.8	STDM-2017-22
Hjj EWK, (tot.)	$\sigma = \substack{4.57 + 0.68 - 0.65 + 0.6 - 0.52 \text{ pb (data)} \\ \text{LHC-HXSWG (theory)}}$			79.8	HIGG-2018-57
	$\sigma = {2.43 + 0.5 - 0.49 + 0.33 - 0.26} \ {\rm pb}$ (data) LHC-HXSWG YR4 (theory)		A	20.3	EPJC 76, 6 (2016)
	$\sigma = 500 + 240 - 220 \pm 170~{\rm fb}~{\rm (data)}$ NNLO QCD and NLO EW (LHC-HXSWG) (theory)		36.1	PLB 789 (2019) 508
	$\sigma = \underbrace{0.51 + 0.17 - 0.15 + 0.13 - 0.08}_{\text{LHC-HXSWG (theory)}} \text{ (data)}$	Theory		20.3	PRD 92, 012006 (2015)
— $H(\rightarrow \gamma \gamma)jj$ EWK (y <2.5)	$\sigma = \underbrace{11.2 + 2.6 - 2.4 + 2.3 - 1.6}_{\text{LHC-HXSWG (theory)}} \text{ (bdata)}$			79.8	ATLAS-CONF-2018-028
Wjj EWK $(M(jj) > 1 \text{ TeV})$	$\sigma = \begin{array}{l} \text{43.5} \pm \text{6} \pm \text{9 fb (data)} \\ \text{Powheg+Pythia8 NLO (theory)} \end{array}$	LHC pp $\sqrt{s} = 7$ TeV		20.2	EPJC 77 (2017) 474
M(ii) > 500 CeV	$\sigma = \begin{array}{c} 159 \pm 10 \pm 26 \text{ fb (data)} \\ \text{Powheg+Pythia8 NLO (theory)} \end{array}$	Data		20.2	EPJC 77 (2017) 474
-101(JJ) > 500 GeV	$\sigma = \begin{array}{l} 144 \pm 23 \pm 26 \text{ fb (data)} \\ \text{Powheg+Pythia8 NLO (theory)} \end{array}$	stat e syst		4.7	EPJC 77 (2017) 474
7::	$\sigma = \begin{array}{l} \textbf{34.2 \pm 5.8 \pm 5.5 \ fb} \ (\text{data}) \\ \textbf{Powheg+Pythia8 NLO} \ (\text{theory}) \end{array}$			3.2	PLB 775 (2017) 206
	$\sigma = \begin{array}{c} 10.7 \pm 0.9 \pm 1.9 \text{ fb (data)} \\ \text{PowhegBox (NLO) (theory)} \end{array}$			20.3	JHEP 04, 031 (2014)
$\gamma\gamma \rightarrow WW$	$\sigma = 6.9 \pm 2.2 \pm 1.4 \text{ fb (data)} \\ \text{HERWIG++ (theory)}$	stat	A	20.2	PRD 94 (2016) 032011
Ζ γ jj EWK	$\sigma = \underbrace{1.1 \pm 0.5 \pm 0.4 \text{ fb}}_{\text{VBFNLO (theory)}} (\text{data})$	stat ⊕ syst		20.3	JHEP 07 (2017) 107
W⁺W⁺jj EWK	$\sigma = 2.95 \pm 0.49 \pm 0.23$ fb (data) Sherpa 2.2.2 (theory)	LHC pp $\sqrt{s} = 13 \text{ TeV}$		36.1	ATLAS-CONF-2018-030
	$\sigma = 1.5 \pm 0.5 \pm 0.2 \text{ fb (data)} \\ \text{PowhegBox (theory)}$	Data	A	20.3	PRD 96, 012007 (2017)
WZjj EWK	$\sigma = \underbrace{0.57 + 0.14 - 0.13 + 0.07 - 0.05}_{\text{Sherpa 2.2.2 (theory)}} \text{ (data)}$	stat ⊕ syst		36.1	arXiv: 1812.09740 [hep-ex]
	$\sigma = \underset{\text{VBFNLO (theory)}}{0.29 + 0.14 - 0.12 + 0.09 - 0.1} \text{ fb (data)}$		٨	20.3	PRD 93, 092004 (2016)
				للب م ح	
		0.0 0.5 1.0	1.5 2.0 2.5 3.0	3.5	
			data/theor	V	

Three Massive Bosons

□ Rare processes, sensitive to quartic couplings in the SM

First evidence of three massive boson production, observed (expected) sig. = $4.0(3.1)\sigma$

Events / 10 GeV Data VVV ATLAS WZ ZZ 13 TeV, 79.8 fb Non-prompt Μγ conv. WWW: $\ell^{\pm}\ell^{\pm}i$ Other 1/2 Uncertainty Post-fit 60 40 20 Data / Pred 0.5 0 50 100 150 250 300 200 m_{ii} [GeV] Events Data VVV ATLAS 18 WZ ZZ 13 TeV, 79.8 fb⁻¹ ∎tīZ WtZ 16 WVZ: 4 & DF Other 1/2 Uncertainty Post-fit 14 12 10 :≺ < Data / Pred. 0.5 0 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8

7/5/2019

BDT response

Large amount of events, to be used to examine the relevant modelling

Golden channel" to study VBS

	e^+e^+	e^-e^-	$e^+\mu^+$	$e^-\mu^-$	$\mu^+\mu^+$	$\mu^-\mu^-$	Combined
WZ	1.48 ± 0.32	1.09 ± 0.27	11.6 ± 1.9	7.9 ± 1.4	5.0 ± 0.7	$3.4~\pm~0.6$	30 ± 4
Non-prompt	$2.2~\pm~1.1$	$1.2~\pm~0.6$	$5.9~\pm~2.5$	$4.7 ~\pm~ 1.6$	0.56 ± 0.05	0.68 ± 0.13	15 ± 5
e/γ conversions	$1.6~\pm~0.4$	$1.6~\pm~0.4$	$6.3~\pm~1.6$	$4.3~\pm~1.1$			$13.9~\pm~2.9$
Other prompt	$0.16\pm~0.04$	0.14 ± 0.04	$0.90\pm~0.20$	0.63 ± 0.14	$0.39\pm~0.09$	$0.22\pm~0.05$	$2.4~\pm~0.5$
$W^{\pm}W^{\pm}jj$ strong	0.35 ± 0.13	0.15 ± 0.05	$2.9~\pm~1.0$	1.2 ± 0.4	$1.8~\pm~0.6$	0.76 ± 0.25	7.2 ± 2.3
Expected background	5.8 ± 1.4	$4.1~\pm~1.1$	28 ± 4	$18.8~\pm~2.6$	7.7 ± 0.9	$5.1~\pm~0.6$	69 ± 7
$W^{\pm}W^{\pm}jj$ electroweak	5.6 ± 1.0	2.2 ± 0.4	24 ± 5	9.4 ± 1.8	13.4 ± 2.5	5.1 ± 1.0	60 ± 11
Data	10	4	44	28	25	11	122

Both ATLAS and CMS have now observed this process with > 5 σ significance

Events / 100 GeV

VBS WZjj

\Box First observation of VBS WZjj (5.3 σ)

ZZ-CR

52

 45.2 ± 7.5

 0.21 ± 0.12

 1.43 ± 0.22

 0.47 ± 0.21

 0.18 ± 0.04

 2.8 ± 0.61

 4.1 ± 1.4

 1.05 ± 0.30

 35 ± 11

VBS VVjj – Semileptonic Decays !!!

Larger Br., combining VBS WW/WZ/ZZ "collectively" to gain sensitivity to new physics (at large pT etc.)

Used both "merged" jets and resolved jets Observed (expected) significance 2.7 (2.5) σ

Rarest of this kind; observation of this process will be another milestone in the EW physics program

No sufficient significance to claim an evidence yet; highly anticipated channel with full Run-II data

Summary

Studies of EW interactions at the LHC have been discussed in a brief way

So far, <u>no obvious deviation from the SM</u> were found (<u>also from direct searches</u>)

Many of these results interpreted into constraints on BSM physics, e.g. anomalous couplings / EFT

In many places, test of the SM enters into a precision era

<u>Scrutiny of a larger data sample is needed</u> to bring the understanding of the EW physics to a next-level precision

Observation of BSM only through Precision measurements???

Summary

Many of the measurements are entering a stage limited by systematic uncertainties now (or soon) at the LHC

CEPC provides enormous amount of Z bosons (10¹²), as well as W bosons, and with the precision detection apparatus, can be a ideal machine for extending the knowledge of EW physics.

W, Z masses, weak mixing angle; QCD through Z decays WW production and the involved TGCs Z rare decays Neutral couplings ...

New Physics Everywhere or Nowhere ???

