Introduction and Plans for CEPC Higgs physics

Yaquan Fang (IHEP)

CEPC physics workshop at Peking University

Higgs white paper @ CDR

Chinese Physics C Vol. 43, No. 4 (2019) 043002

Precision Higgs Physics at the CEPC^{*}

2019

Mar

4

[hep-ex]

arXiv:1810.09037v2

Fenfen An^{4,23} Yu Bai⁹ Chunhui Chen²³ Xin Chen⁵ Zhenxing Chen³ Joao Guimaraes da Costa⁴ Zhenwei Cui³ Yaquan Fang^{4,6,34} Chengdong Fu⁴ Jun Gao¹⁰ Yanyan Gao²² Yuanning Gao³ Shao-Feng Ge^{15,29} Jiayin Gu¹³ Fangyi Guo^{1,4} Jun Guo¹⁰ Tao Han^{5,31} Shuang Han⁴ Hong-Jian He^{11,10} Xianke He¹⁰ Xiao-Gang He^{11,10,20} Jifeng Hu¹⁰ Shih-Chieh Hsu³² Shan Jin⁸ Maoqiang Jing^{4,7} Susmita Jyotishmati³³ Ryuta Kiuchi⁴ Chia-Ming Kuo²¹ Pei-Zhu Lai²¹ Boyang Li⁵ Congqiao Li³ Gang Li^{4,34} Haifeng Li¹² Liang Li¹⁰ Shu Li^{11,10} Tong Li¹² Qiang Li³ Hao Liang^{4,6} Zhijun Liang^{4,34} Libo Liao⁴ Bo Liu^{4,23} Jianbei Liu¹ Tao Liu¹⁴ Zhen Liu^{26,30} Xinchou Lou^{4,6,33,34} Lianliang Ma¹² Bruce Mellado^{17,18} Xin Mo⁴ Mila Pandurovic¹⁶ Jianming Qian²⁴ Zhuoni Qian¹⁹ Nikolaos Rompotis²² Mang Lian-You Shan⁴ Jingyuan Shi⁹ Xin Shi⁴ Shufang Su²⁵ Dayong Wang³ Lian-Tao Wang²⁷ Yifang Wang^{4,6} Yuqian Wei⁴ Yue Xu⁵ Haijun Yang^{10,} -Weiming Yao²⁸ Dan Yu⁴ Kaili Zhang^{4,6} Zhaoru Zhang⁴ Mingrui Zhao² Xiang ¹ Department of Modern Physics, University of Science and Technology of China, Anhui 230 ² China Institute of Atomic Energy, Beijing 102413, China ³ School of Physics, Peking University, Beijing 100871, China ⁴ Institute of High Energy Physics, Beijing 100049, China ⁵ Department of Engineering Physics, Physics Department, Tsinghua University, Beijing 100 — ⁶ University of Chinese Academy of Science (UCAS), Beijing 100049, China ⁷ School of Nuclear Science and Technology, University of South China, Hengyang 42100 ⁸ Department of Physics, Nanjing University, Nanjing 210093, China ⁹ Department of Physics, Southeast University, Nanjing 210096, China ¹⁰ School of Physics and Astronomy, Shanghai Jiao Tong University, KLPPAC-MoE, SKLPPC, Shar ¹¹ Tsung-Dao Lee Institute, Shanghai 200240, China University, Qingdao 266237, China

¹² Institute of Frontier and Interdisciplinary Science and Key Laboratory of Particle Physics and Particle Irr ¹³ PRISMA Cluster of Excellence & Mainz Institute of Theoretical Physics, Johannes Gutenberg-Universi Germany ¹⁴ Department of Physics, Hong Kong University of Science and Technology, Hong K ¹⁵ Kavli IPMU (WPI), UTIAS, The University of Tokyo, Kashiwa, Chiba 277-8583, J ¹⁶ Vinca Institute of Nuclear Sciences, University of Belgrade, Belgrade 11000, Sert ¹⁷ School of Physics and Institute for Collider Particle Physics, University of the Witwatersrand, Johanne ¹⁸ iThemba LABS, National Research Foundation, PO Box 722, Somerset West 7129, Sou ¹⁹ Center for Theoretical Physics of the Universe, Institute of Basic Science, Daejeon 34126, 1 ²⁰ Department of Physics, National Taiwan University, Taipei 10617, Taiwan ²¹ Department of Physics and Center for High Energy and High Field Physics, National Central University, T ²² Department of Physics, University of Liverpool, Liverpool L69 7ZX, United Kinge ²³ Department of Physics and Astronomy, Iowa State University, Ames 50011-3160, USA ²⁴ Department of Physics, University of Michigan, Ann Arbor, Michigan 48109, USA ²⁵ Department of Physics, University of Arizona, Arizona 85721, USA ²⁶ Theoretical Physics Department, Fermi National Accelerator Laboratory, Batavia 60510, USA ²⁷ Department of Physics, University of Chicago, Chicago 60637, USA ²⁸ Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA ²⁹ Department of Physics, University of California, Berkeley, California 94720, USA ³⁰ Maryland Center for Fundamental Physics, Department of Physics, University of Maryland, College Park, Maryland 20742, USA ³¹ Department of Physics & Astronomy, University of Pittsburgh, Pittsburgh 15260, USA

³² Department of Physics, University of Washington, Seattle 98195-1560, USA ³³ Department of Physics, University of Texas at Dallas, Texas 75080-3021, USA

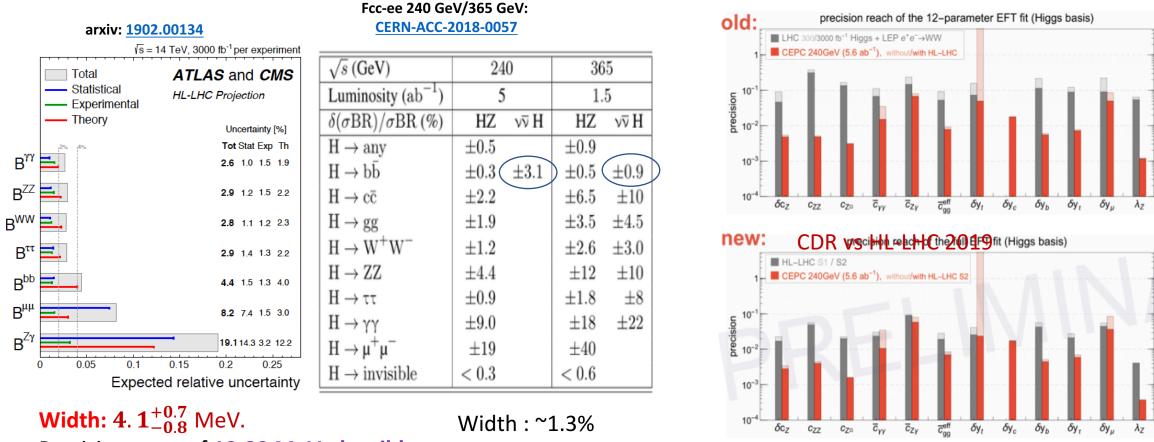
Descined 0 Neverther 2018, Descined 21 January 2010, Dublished Online

³⁴ Physical Science Laboratory, Huairou National Comprehensive Science Center, Beijing, 101400, China

V2 is at arxiv. CPC : Vol 43, No.4 (2019) 043002

Thanks to those colleagues for great efforts. Welcome to new colleagues to join in.

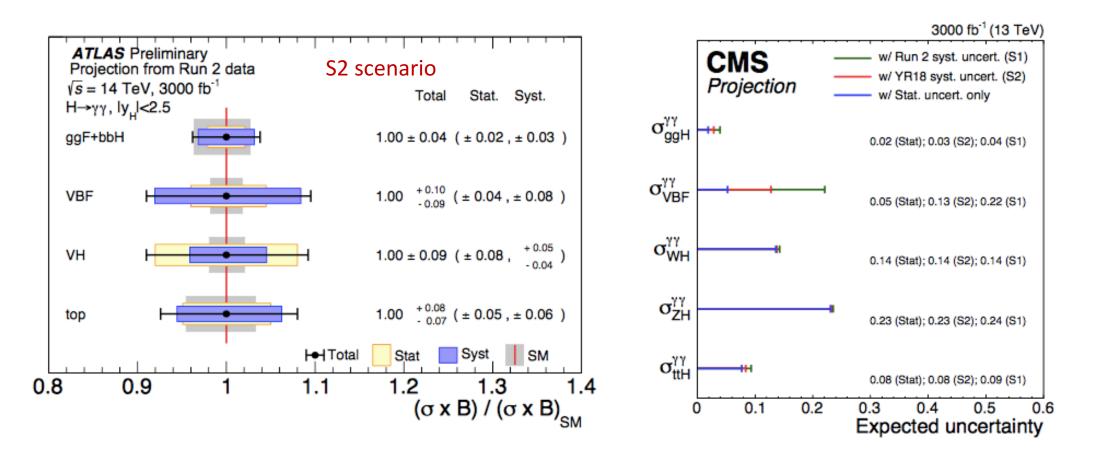
		E.C.	1 D			
	Estimated Precision					
Property	CEPC-v1		CEPC-v4			
m_H	5.9 MeV		5.9	$5.9 { m MeV}$		
Γ_H	2.7%		2.8%			
$\sigma(ZH)$	0.5%		0.5%			
$\sigma(\nu \bar{\nu} H)$	3.0%		3.2%			
Decay mode	$\sigma \times \mathrm{BR}$	BR	$\sigma \times BR$	BR		
$H \rightarrow b \bar{b}$	0.26%	0.56%	0.27%	0.56%		
$H \rightarrow c\bar{c}$	3.1%	3.1%	3.3%	3.3%		
$H \rightarrow gg$	1.2%	1.3%	1.3%	1.4%		
$H \mathop{\rightarrow} WW^*$	0.9%	1.1%	1.0%	1.1%		
$H \rightarrow ZZ^*$	4.9%	5.0%	5.1%	5.1%		
$H \rightarrow \gamma \gamma$	6.2%	6.2%	6.8%	6.9%		
$H \rightarrow Z\gamma$	13%	13%	16%	16%		
$H \rightarrow \tau^+ \tau^-$	0.8%	0.9%	0.8%	1.0%		
$H \rightarrow \mu^+ \mu^-$	16%	16%	17%	17%		
BR _{inv}	_	< 0.28%	_	< 0.30%		



该二维码7天内(7月8日前)有效,重新进入将更新

Mailing list: cepc-physics@maillist.ihep.ac.cn

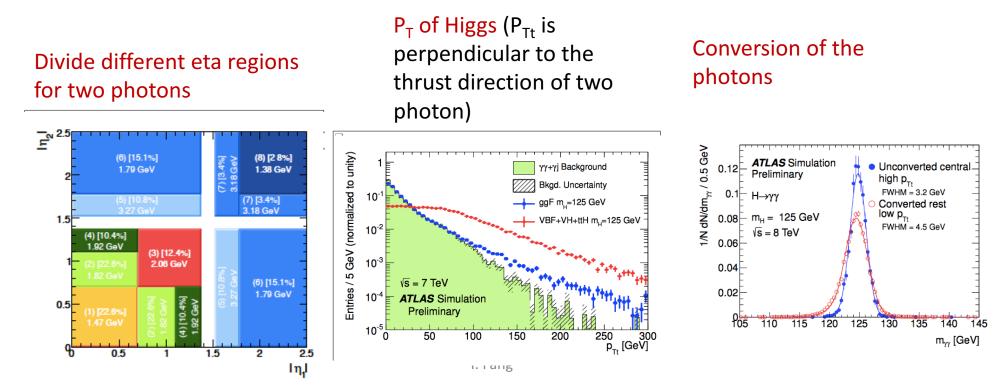
Recent news

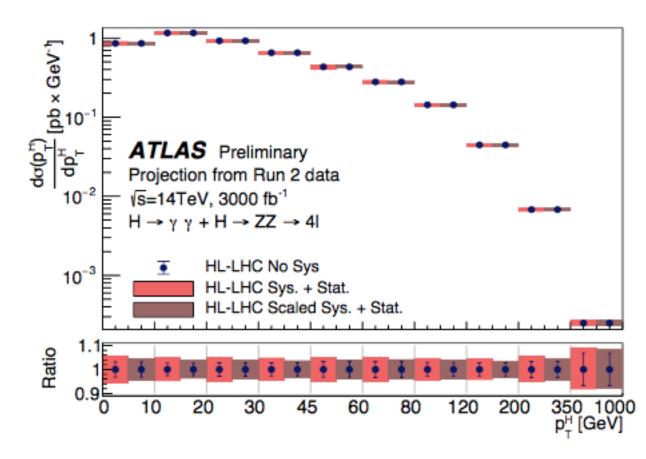


Precision mass of 10-20 MeV plausible

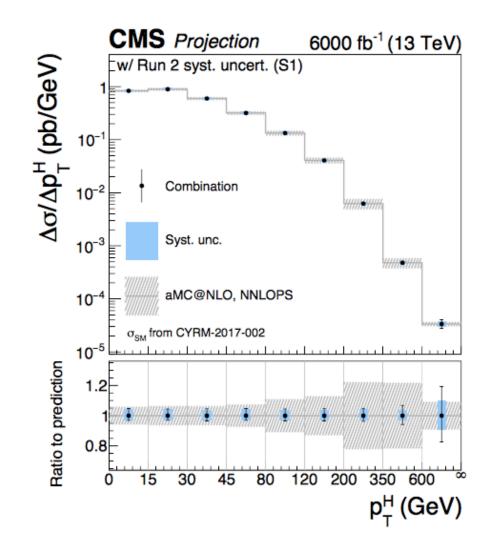
- LHC updated their projected results based on current Run 2 studies and possible improvements on • uncertainties :
 - theory ½ and experimental systematics 1/sqrt(L) of current ones (check talk at CEPC workshop in Oxford)
- Fcc-ee has similar results as CEPC but including a 365 GeV run improving the measurement of Higgs width. 3

CDR vs HL-LHC 2014

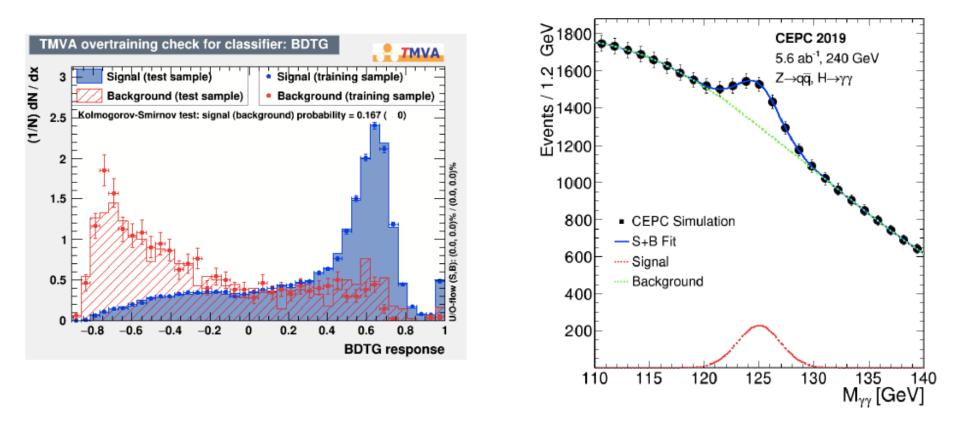

HL-LHC H-> $\gamma\gamma$: one example


Scenario S1: Total uncertainty is half of the one used for the result of 80 fb⁻¹. Scenario S2: Total uncertainty is 1/3 of the one for 80 fb⁻¹.

HL-LHC H-> $\gamma\gamma$: very advanced analyses (example)


- The inclusive analysis is very simple :
 - Photon ID, Isolation, Kinematic cuts on leading/subleading photon.
- Explore other possible improvements ?
 - Divide events into different categories.

HL-LHC: Differential xsection measurement


The precision can reach a few percent for different p_T bins.

Plan for CEP Higgs physics

- Improve the analyses with different technologies:
 - MVA, multi-dim fit.
 - Improve the performance b-tagging, photon ID/conversion etc.
 - Test different setup-of the detectors
- Test the analyses with different colliding energy
 - Benchmark : 360 GeV/1.5(2.0) ab⁻¹
 - Improvement of ww fusion on the Higgs width as well as the precision measurement.
 - ttbar run
- Differential xsection measurements
 - Start to do that.
- Interpretation on the results
 - Further cooperation with theorists (in particular the domestic theorists)
- Wrap up with a post CDR Higgs paper.

Some preliminary progresses (H-> $\gamma\gamma$)

- \blacktriangleright Variables having low correlations with M $\gamma\gamma$ are chosen as inputs to MVA
- > Two dimensional fit is implemented to extract the precision of the measurement.
- > The improvement is ~30% in the channel of $Z(->qq)H->\gamma\gamma$ for the precision measurment.
- See more in Fangyi Guo's <u>talk</u>.

High energy (360 GeV) Run

Results

Kaili's <u>talk</u>

	5.6ab ⁻¹ , 240	2ab ⁻¹ , 360	1.5ab ⁻¹ , 360
$\sigma(ZH)$	0.50%	1% ?	
$\sigma(ZH) * Br(H \rightarrow bb)$	0.27%	0.63%	0.71%
$\sigma(ZH) * Br(H \rightarrow cc)$	3.3%	6.2%	7.2%
$\sigma(ZH) * Br(H \rightarrow gg)$	1.3%	2.4%	2.7%
$\sigma(ZH) * Br(H \rightarrow WW)$	1.0%	2.0%	2.3%
$\sigma(ZH) * Br(H \rightarrow ZZ)$	5.1%	12%	14%
$\sigma(ZH) * Br(H \rightarrow \tau\tau)$	0.8%	1.5%	1.7%
$\sigma(ZH) * Br(H \rightarrow \gamma \gamma)$	5.4%	8%	9.2%
$\sigma(ZH) * Br(H \rightarrow \mu\mu)$	12%	29%	33%
$\sigma(vvH) * Br(H \rightarrow bb)$	3%	0.79%	0.91%
$Br_{upper}(H \rightarrow inv.)$	0.2%	١	١
$\sigma(ZH) * Br(H \rightarrow Z\gamma)$	16%	25%	29%
Width	2.8%	~0.8%	

*: $\sigma(ZH)$ estimated as 1%.

Mostly from WW fusion 0.3GeV to 1GeV: 29% (Hao Liang's talk)

 \sqrt{s} (GeV)

 $H \rightarrow any$

 $H \rightarrow b\bar{b}$

 $H \rightarrow c\bar{c}$

 $H \rightarrow gg$

 $H \rightarrow ZZ$

 $H \rightarrow \tau \tau$

 $H \rightarrow \gamma \gamma$

 $H \rightarrow \mu^+ \mu^-$

 $H \rightarrow invisible$

 $H \rightarrow W^+W^-$

Luminosity (ab⁻¹) $\delta(\sigma BR)/\sigma BR$ (%)

40	36	65
5	1.	5
$\nu \overline{\nu} H$	HZ	$\sqrt{\nu} H$
	± 0.9	
± 3.1	± 0.5	± 0.9
	± 6.5	± 10

 ± 4.5

 ± 3.0

 ± 10

 ± 22

 ± 8

 ± 3.5

 ± 2.6

 ± 12

 ± 1.8

 ± 18

 ± 40

< 0.6

Generally, since the extrapolation is not so accurate, results are comparable.

HZ

 ± 0.5

 ± 0.3

 ± 2.2

 ± 1.9

 ± 1.2

 ± 4.4

 ± 0.9

 ± 9.0

 ± 19

< 0.3

For $H \rightarrow \gamma\gamma$ and $H \rightarrow \mu\mu$, resolution changes considered. Keep diphoton resolution ~(2.5GeV) : 10.2% 2.5GeV to 2GeV: 9.20%

Keep dimuon resolution ~(0.3GeV): 23% 0.3GeV to 1GeV: 29%

Talks in Higgs section

14:00 - 15:30 Higgs Wednesday, 3 July 2019 Conveners: Liantao Wang (University of Chicago), WANG Jianchun 14:00 Introduction and plan for Higgs physics 25' 09:00 - 10 Speaker: Prof. Yaquan FANG Yaquan (高能所) 14:25 Kappa measurement on CEPC Higgs 25' Speakers: Zhen Liu (FNAL), Zhen Liu (University of Pittsburgh) EFT on CEPC Higgs physics 20' 14:50 Speaker: Dr. Jiayin Gu (JGU Mainz) Material: Slides 📆 Alternative me nf3.pdf r Higgs measurement 20' 15:10 Speaker: Dr. Gang LI (EPD, IHEP, CAS) 15:30 - 15:50 Coffee Break 10:30 - 10 10:50 - 12 15:50 - 17:15 Higgs Convener: Jianming Qian (University of Michigan) 15:55 WW fusion with 360 GeV 25' Speaker: Hao Liang 16:20 Combination for Higgs measurement with 360 GeV 25' Speaker: Kaili Zhang (IHEP) Material: Slides 📆 Update on the mesurement of bb, cc, gg 25' 16:45 Speaker: Yu Bai (Southeast University)

-

suay,	J July 2	2019	
):30	Higgs Convene	er: Xin Shi (IHEP)	-
	09:00	Update on H->tautau 25' Speakers: Mrs. Dan YU (LLR), YU Dan Material: Slides	-
	09:25	Status of H->mumu 20' Speaker: Kunlin RAN (Beijing)	-
	09:45	the study of Higgs invisible decay 20' Speaker: TAN Yuhang (高能所)	-
	10:05	Higgs decaying into ZZ* 20' Speaker: Ryuta Kiuchi	-
):50 2:20	Coffee Higgs Convene	Break er: Prof. Yaquan FANG Yaquan (高能所)	-
	10:50	MVA anlsysi on H->gamma gamma 20' Speaker: Fangyi Guo (IHEP) Material: Slides	•
	11:10	Differential measurement on Higgs 20' Speaker: ABDUALAZEM FADOL MOHAMMED EBRHIM (高能所)	-
	11:30	Review and Discussion on Higgs physics 40' Speaker: Jianming Qian (University of Michigan)	•

Conclusion

- The Higgs CDR is done and the studies post CDR toward TDR start
- Different topics will be addressed (page 7).
- Manpower needed (welcome to join)

backup slides

One example

Category	Events	B ₉₀	<i>S</i> 90	f 90	Z_{90}	S_{90}^{fit}
Central low- p_{Tt}	31907	3500	180	0.05	3.04	120
Central high- p_{Tt}	1319	140	20	0.13	1.66	15
Forward low- p_{Tt}	85129	13000	310	0.02	2.73	200
Forward high- p_{Tt}	3977	540	33	0.06	1.38	25

The improvement of significance w.r.t. inclusive one is from 4.0 to 4.6, corresponding 13% improvement on the precision.

Measurement of Higgs width

 Method 1: Higgs width can be determined directly from the measurement of σ(ZH) and Br. of (H->ZZ*)

$$\Gamma_H \propto \frac{\Gamma(H \to ZZ^*)}{\text{BR}(H \to ZZ^*)} \propto \frac{\sigma(ZH)}{\text{BR}(H \to ZZ^*)}$$
 Precision : 5.1%

- But the uncertainty of Br(H->ZZ*) is relatively high due to low statistics.
- Method 2: It can also be measured through:

$$\Gamma_{H} \propto \frac{\Gamma(H \to bb)}{BR(H \to bb)} \qquad \sigma(\nu\bar{\nu}H \to \nu\bar{\nu}b\bar{b}) \propto \Gamma(H \to WW^{*}) \cdot BR(H \to bb) = \Gamma(H \to bb) \cdot BR(H \to WW^{*})$$

$$\Gamma_{H} \propto \frac{\Gamma(H \to bb)}{BR(H \to bb)} \propto \frac{\sigma(\nu\bar{\nu}H \to \nu\bar{\nu}b\bar{b})}{BR(H \to b\bar{b}) \cdot BR(H \to WW^{*})} \qquad 3.0\%$$
Precision : 3.5%

• These two orthogonal methods can be combined to reach the best precision. Precision: 2.8%