A global analysis approach

A single parameter quantifies both Higgs Br precision and detector performance

P. Shen and G. Li

CEPC physics workshop, 2019/07/01-05, PKU

Outline

- Motivation
- Method
- Some numerical results with toy MC
- Discussion & summary

- Competition from both HL-LHC and FCC-ee
- FCC-ee
- ATLAS-CMS extrapolation range from 2 - 4%, with the exception of that on $B^{\mu\mu}$ at 8% and on $B^{Z\gamma}$ at 19%.

We possess what the LHC lacks (人无我有)

- Tagging method, absolute/model-independent
- All Higgs decays accessible except e and uds
- Multinomial distribution: statistical constraint
- Two types of backgrounds
 - Higgs background (crosstalk)
 - non-Higgs background (enlarge the stat. unc. of $n_{i})$

 n_i/ϵ_{ii}

non-Higgs background

- subtracted with fitting
- but enlarges σ_{n_i}

Take the simplest case as an example -2 decay modes

Efficiency matrix Based on MC, no dependence on Br's

A produced final state reconstructed as final state

Measurement: DEMODULATION All knowns on the right Solve N and minimize its uncertainty

2 decays p+q=1 — binomial distribution

Based on text book, please read <u>https://en.wikipedia.org/wiki/Binomial_distribution</u> <u>https://en.wikipedia.org/wiki/Multinomial_distribution</u>

binomial / multinomial distributions

More on the full covariance

$$V = egin{pmatrix} Npq & -Npq \ -Npq & Npq \end{pmatrix}$$

100% anti-correlated between the two decays! This can be used in data analysis to improve precisions.

Successful examples

- Precision measurement of the D^{*0} decay branching fractions by BESIII, Phys. Rev. D91 (2015) no.3, 031101
- Branching ratios of tau decays by ALEPH, Physics Reports 421 (2005) 191–284

Let's see how it happens

$$ec{\sigma}_n = \left(egin{array}{c} ec{\sigma}_{n_1} \ ec{\sigma}_{n_2} \end{array}
ight) ,$$

$$\sigma_{n_i}^2 = \vec{\sigma}_{n_i} \cdot \vec{\sigma}_{n_i}, \ \sigma_{n_{ij}} = \sigma_{n_{ji}} = \sigma_{n_1} \sigma_{n_2} \rho_{ij} = \vec{\sigma}_{n_i} \cdot \vec{\sigma}_{n_j},$$

$$\rho_{ij} = \frac{\vec{\sigma}_{n_i} \cdot \vec{\sigma}_{n_j}}{\sigma_{n_1} \sigma_{n_2}},$$

Matrix: compact and easy to expand to higher dimension

$$\Sigma^{n} = \vec{\sigma}_{n} \vec{\sigma}_{n}^{T} = \begin{pmatrix} \vec{\sigma}_{n_{1}} \\ \vec{\sigma}_{n_{2}} \end{pmatrix} \begin{pmatrix} \vec{\sigma}_{n_{1}} \\ \vec{\sigma}_{n_{2}} \end{pmatrix}^{T}$$
$$= \begin{pmatrix} \sigma_{n_{1}}^{2} & \sigma_{n_{12}} \\ \sigma_{n_{21}} & \sigma_{n_{2}}^{2} \end{pmatrix}$$

Space transformation $n(observable) \rightarrow N(production)$

$$J_{Nn}=E^{-1}=rac{1}{|E|}egin{pmatrix}\epsilon_{22}&-\epsilon_{12}\-\epsilon_{21}&\epsilon_{11}\end{pmatrix}\equivrac{J_N}{|E|}$$

Space transformation $N(production) \rightarrow B(branching ratios)$

$$J_{BN} = rac{1}{N^2}igg(egin{array}{cc} N_2 & -N_1 \ -N_2 & N_1 \ \end{pmatrix} = rac{J_B}{N^2}$$

• Features

 \mathbf{V} Variance of B proportional to $1/(N^4|\mathbf{E}|^2)$

M⁴ : statistical power

E|² proportional to the performance of Detector x Reconstruction x Analysis

Same uncertainties for both Br's

$$ec{\sigma}_B \!\!= J_{BN} J_{Nn} ec{\sigma}_n \!\!= rac{igg(egin{array}{c} n_2 ec{\sigma}_1 \!-\! n_1 ec{\sigma}_2 \ -\! n_2 ec{\sigma}_1 \!+\! n_1 ec{\sigma}_2 igg) \ N^2 |E| \end{array}$$

$$egin{split} \Sigma_B &= rac{ec{\sigma}_B ec{\sigma}_B^T}{N^4 |E|^2} \ &= rac{[J_B J_N ec{\sigma}_n] [J_B J_N ec{\sigma}_n]^T}{N^4 |E|^2} \ &= rac{(n_2 \sigma_{n_1} + n_1 \sigma_{n_2})^2}{N^4 |E|^2} egin{pmatrix} 1 & -1 \ -1 & 1 \end{pmatrix} \end{split}$$

More than 2 decay modes

Similar features as N=2

Numerical results with toy MC

On backgrounds

- Two type of backgrounds
 - Non-uuH backgrounds: subtracted by fitting, enlarging statistical uncertainty of n_i
 - uuH backgrounds(cross talk): the efficiency matrix dealing with them

➢N and n_i

- 9 Higgs decays accessible
- Di-muon, di-photon, and gamma Z are tiny: only 0.02%, 0.23%, and 0.15%, respectively
- cc contaminated by bb due to large bb Br
- ZZ important for Higgs Width

Solve N_i by minimizing the χ^2 with constraint

$$\chi^2 = \sum_i rac{(\sum \epsilon_{ij} N_j - n_i)^2}{\sigma_{n_i}^2} + rac{(\sum_l N_l - N)^2}{\sigma_N^2}$$

Higgs -> cc, bb, mm, tt, gg, aa, aZ, ZZ, WW 1 2 3 4 5 6 7 8 9

$\begin{pmatrix} n_1 \end{pmatrix}$		$\int \epsilon_{11}$	ϵ_{12}	ϵ_{13}	ϵ_{14}	ϵ_{15}	ϵ_{16}	ϵ_{17}	ϵ_{18}	ϵ_{19}	$\left(\begin{array}{c} N_1 \end{array} \right)$
n_2		ϵ_{21}	ϵ_{22}	ϵ_{23}	ϵ_{24}	ϵ_{25}	ϵ_{26}	ϵ_{27}	ϵ_{28}	ϵ_{29}	N_2
n_3		ϵ_{31}	ϵ_{32}	ϵ_{23}	ϵ_{34}	ϵ_{35}	ϵ_{36}	ϵ_{37}	ϵ_{38}	ϵ_{39}	N_3
n_4		ϵ_{41}	ϵ_{42}	ϵ_{33}	ϵ_{44}	ϵ_{45}	ϵ_{46}	ϵ_{47}	ϵ_{48}	ϵ_{49}	N_4
n_5	=	ϵ_{51}	ϵ_{52}	ϵ_{43}	ϵ_{54}	ϵ_{55}	ϵ_{56}	ϵ_{57}	ϵ_{58}	ϵ_{59}	N_5
n_6		ϵ_{61}	ϵ_{62}	ϵ_{53}	ϵ_{64}	ϵ_{65}	ϵ_{66}	ϵ_{67}	ϵ_{68}	ϵ_{69}	N_6
n_7		ϵ_{71}	ϵ_{72}	ϵ_{63}	ϵ_{74}	ϵ_{75}	ϵ_{76}	ϵ_{77}	ϵ_{78}	ϵ_{79}	N_7
n_8		ϵ_{81}	ϵ_{82}	ϵ_{73}	ϵ_{84}	ϵ_{85}	ϵ_{86}	ϵ_{87}	ϵ_{88}	ϵ_{89}	N_8
$\left\langle n_9 \right\rangle$		$\left(\epsilon_{91} \right)$	ϵ_{92}	ϵ_{83}	ϵ_{94}	ϵ_{95}	ϵ_{96}	ϵ_{97}	ϵ_{98}	ϵ_{99} /	$\left(\begin{array}{c} N_9 \end{array} \right)$

Neglect e and uds decays — constraint feasible

$$\sum_{i} N_i = N^{tag} \text{ or } \sum_{i} B_i = 1$$

$$B_i = rac{N_i}{N}$$

Statistical limit

- ▶99% efficiency,
- ➡no cross talk,
- no other backgrounds
- eeH and qqH as good as mumuH

	(0.99	0	0	0	0	0	0	0	0 \
	0	0.99	0	0	0	0	0	0	0
	0	0	0.99	0	0	0	0	0	0
	0	0	0	0.99	0	0	0	0	0
E =	0	0	0	0	0.99	0	0	0	0
	0	0	0	0	0	0.99	0	0	0
	0	0	0	0	0	0	0.99	0	0
	0	0	0	0	0	0	0	0.99	0
	0	0	0	0	0	0	0	0	0.99/

 $N = L imes (\sigma_{\mu\mu H} + \sigma_{eeH} + \sigma_{qqH}) = 5600 imes (6.77 + 7.04 + 136.81) = 843,372$

Ideal case: eeH, qqh as good as uuH

No background, no cross talk, multinomial uncertainties, and constraint

$$\sigma_{n_i} = \sqrt{Np(1-p)\epsilon_{ii}}$$

		MLT		POS
Bcc	2.713%	0.650% (0.655%	0.664%)
Bbb	57.799%	0.086% 🌾	0.094%	0.144%)
Bmm	0.023%	7.190% (7.197%	7.198%)
Btt	6.319%	0.413% (0.421%	0.435%)
Bgg	8.619%	0.347% (0.356%	0.373%)
Baa	0.227%	2.294% (2.296%	2.299%)
BaZ	0.150%	2.818% (2.820%	2.822%)
BZZ	2.647%	0.658%	0.664%	0.673%)
BWW	21.496%	0.198% (0.209%	0.236%

More realistic: eeH, qqh as good as uuH 100% background, no cross talk, multinomial uncertainties, and constraint

$$\sigma_{n_i} = \sqrt{Np(1-p)\epsilon_{ii}}$$

		MLT		POS
Bcc	2.713%	0.773% (0.779%	0.790%)
Bbb	57.799%	0.102% (0.111%	0.171%)
Bmm	0.023%	8.547%	8.559%	8.560%)
Btt	6.319%	0.492% (0.501%	0.518%)
Bgg	8.619%	0.413% (0.424%	0.443%)
Baa	0.227%	2.728% (2.731%	2.734%)
BaZ	0.150%	3.350% (3.353%	3.356%)
BZZ	2.647%	0.783% (0.789%	0.800%)
BWW	21.496%	0 235% (0.249%	0 282%)

Short discussion

- This approach can improve Higgs branching ratio measurement and set a statistical limit
- qqH and eeH not good as uuH, but much more statistics
- Degrading in real analysis and lots of compromises
- No full cross talk information in current analyses

Detector design & Optimization

Multi-purpose optimization: a bunch of benchmarks — A single parameter is favored, which means single-purpose optimization

Physics performance parameterized as a function of several parameters, or precision of a set of benchmark processes or determinant of efficiency matrix [E]

Difficult

$$P=f(\sigma_p,\sigma_{E_\gamma},PID,JID,JER,\ldots)$$
 $=|E|^2 \propto rac{1}{|\Sigma_B|^2}$
Easy to minimize

Now problem successfully becomes how to Maximize |E|²

Again on efficiency matrix

- Not necessary to know the branching ratios of Higgs decays
- Quantifies the detector/software/analysis performance with a single parameter det E
- It could be useful for detector optimization

A single purpose optimization instead of that of a bunch of benchmarks

Geometrical interpretation of the efficiency matrix

• For a matrix $E = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$, det(E) is the area of a quadrilateral

- S = det(E) = ad bc
- For n=3, det(E) is volume of a parallelepiped
- For N>3, det(E) is hyper volume ...

例1 有向欧氏空间 Rn 中的以 ξ1,...,ξn 为棱的平行体的 有向体积是一个 n-形式 (图 138). $V(\xi_1,\cdots,\xi_n) = \begin{vmatrix} \xi_{11}\cdots\xi_{1n}\\ \cdots\\ \xi_{n1}\cdots\xi_{nn} \end{vmatrix}.$ 这里 $\xi_i = \xi_{i1}e_1 + \cdots + \xi_{in}e_n, e_1, \cdots, e_n$ 是 \mathbb{R}^n 的一个基底.

Maximize |E|²

- N=2, the maximum $|E| \rightarrow$ area of a square
- N=3, the maximum $|E| \rightarrow volume of a cube$
- N>3, ... \rightarrow volume of a HyperCube
- Hypercube efficiency matrix has the ideal/best performance, this is the dream of experimentalists

Detector: HC HyperCube or HiggsCube

Summary

- CEPC dedicated for Higgs study, the Br's important
- Global analysis with constraint improves the precision
- Global analysis of e⁺e⁻>u⁺u⁻H, H⁻> all 9 decay modes serves as a "benchmark" to optimize detector, software, and analysis,
- Advantage : single parameter, easy to optimize, easily to realize in ML
- Using fast simulation + global analysis + machine learning to maximize |E| fast iteration
- Including eeH and qqH much better but difficult, possible to do ..., not very necessary at present