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Hadron production at e+e− colliders

Large cross section of qq̄
production

High luminosity at the CEPC,
generate more than 1011 qq̄
events at Z pole and more
than 108 events at 240 Gev.

These large number of events
can reduce the statistical
uncertainty dramatically.

High energy can suppress the
hadronization effects.

Figure: Total cross section at e+e− colliders

Figure: Luminosity and sample event yields at
the CEPC[CEPC conceptual design report, 2018]
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Event shape observables see also last talk of WanLi Ju

Event shape observables were
designed to obtain useful
information from the large
number of qq̄ events.

From experiment side, being
only composed of kinematics of
final state particles, they are
easy to extract from data.

From theory side, they are
designed to be infrared and
collinear safe therefore can be
reliably calculated in pQCD.

Can be used to extract αs by
comparing theory and data.

Study of hadronization effects.

For example, Thrust T [Brandt et

all., 1964; Farhi, 1977], C-parameter
[Parisi, 1978; Donoghue et al, 1979; Ellis,

1981], wide BW and total BT jet
broadenings [Rakow and Webber,

1981; Ellis and Webber, 1986; Catani et

al., 1992], normalized heavy jet
mass M2

H/s [clavelli, 1979], the
energy-energy correlations
(EEC) [Basham et al, 1978]
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Event Shapes in the Dijet limit see also last talk of WanLi Ju

At lepton colliders, event shape
observables in the dijet limit have
been well studied, to NNLO and N3LL
accuracy [Ridder et al, 2007; Weinzierl,

2008, 2009; Becher et al, 2008; Abbate et

al, 2011; Chien et al, 2010; Hoang et al,

2014].

Determination of αs from
thrust[Abbate, et al., 2010]

αs(mZ) = 0.1135± (0.0002)exp ±
(0.0005)hadr ± (0.0009)pert

A typical two jets event from LEP

Determination of αs from
C-parameter [Hoang et al., 2015 ]

αs(mZ) = 0.1123± (0.0002)exp ±
(0.0007)hadr ± (0.0014)pert
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Event Shapes in the Trijet Limit

However, only a few event shapes in
the trijet limit were studied.

Thrust minor Tm [Banfi et al, 2001]

D-parameter: the three-jet coplanar
region was studied[Banfi et al, 2001];
And recently all regions of D → 0
were studied to perform the full
resummation up to NLL[Larkoski and

Procita, 2018]
Figure: A typical three jets event from LEP

[Larkoski and Procita, 2018]
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Why a new event shape: three-point energy correlation

Allow an all order factorization formula in the coplanar limit

Ingredients of factorization formula known to higher orders

Allow us to get NLO+ NNLL accuracy

Allow an operator definition, can be conveniently used to study
non-perturbative effects

n̂in̂j

n̂k

e+

O

e−
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Review of the EEC

The Energy-Energy Correlation (EEC) is defined as [Basham et al, 1978]

EEC =
1

σtot

∑
ij

∫
dσ
EiEj
Q2

δ (cosχ− cos θij) ,

which measures the correlations of energy deposited in two detectors
separated with angle χ.

e+

e−

χO

Figure from [Moult and Zhu, 2018]
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From CMB to Colliders

In the research of the Cosmic
Microwave Background (CMB),
two- and three-point correlation
functions were studied

Instead of only one universe at the
CMB, we have numerous events at
the lepton colliders

There exists color evolutions of
multiple Wilson lines and therefore
more differential structures at the
colliders.

The general form of three-point
correlations is a multivariable
function

Figure: CMB [Wikipedia]

Figure: One Event at the Lepton
Collider

Tong-Zhi Yang (Zhejiang University) July 2, 2019 8 / 33



Definition of the ETPC

We define a NEW observable, the Energy Triple-Product Correlation
(ETPC), it can be defined as a straightforward generalization of EEC∑
ijk

∫
dσ
EiEjEk
Q3σtot

δ(cosχ1−cos θij)δ(cosχ2−cos θik)δ(cosχ3−cos θjk).

i, j, k run over all the different final state particles

It depends on three variables χ1, χ2 and χ3

It is not convenient to go on by using this definition

We seek a one variable definition as a first step
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Definition of the ETPC

One variable definition of ETPC can be written as

ETPC =
1

σtot

dΣ

dτp
=
∑
ijk

∫
dσ
EiEjEk
Q3σtot

δ (τp − τijk) .

τijk = |(n̂i × n̂j) · n̂k| is the volume of
the parallelepiped formed by n̂i, n̂j and
n̂k which are unit vectors of three
momentum pi, pj and pk of final state
particles

τijk → 0 corresponds that i, j, k are in
the coplanar limit [This work]

O
n̂i

n̂j

n̂k

e+

e−
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The Relation between the ETPC and the D-Parameter

The D-parameter is product of three eigenvalues λ1, λ2, λ3 of the
spherocity tensor Θαβ = 1

Q

∑
i
piαpiβ
Ei

, α, β is the spatial component
of four momentum [Parisi, 1978; Donoghue et al, 1979]

In the case all the final particles are massless

D = 27λ1λ2λ3

=
27

6

{
(λ1 + λ2 + λ3)

[
(λ1 + λ2 + λ3)2 − 3

(
λ2

1 + λ2
2 + λ2

3

)]
+ 2

(
λ3

1 + λ3
2 + λ3

3

)}
=

27

6

{
TrΘ

[
(TrΘ)2 − 3TrΘ2]+ 2TrΘ3}

=
27

Q3

∑
i<j<k

|(~pi × ~pj) · ~pk|2

EiEjEk

=
27

Q3

∑
i<j<k

EiEjEkτ
2
ijk

The average of the D-parameter is the third moment of the ETPC

〈D〉 =
9

2

∫
dτp τ

2
p ETPC (τp)
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Trijet Coplanar limit

The coplanar limit also contain collinear
or back-to-back configurations, in this
work, we only consider trijet coplanar
limit, this means the coplanar three jets
are well separated.

In the work of [Banfi et al., 2001], the trijet
resolution variable y3 is required to be
larger than a parameter

y3 > ycut

y3 is defined to be the minimum value
of yhh′ according to the kT (Durham)
algorithm [Catani, 1991]

yhh′ = 2 (1− cos θhh′) min
(
E2
h, E

2
h′
)
/Q2

n̂in̂j

n̂k

e+

O

e−

Figure: Trijet Coplanar Limit
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Trijet Coplanar Limit for the ETPC

For the ETPC, we apply two methods to approach the trijet coplanar
limit

1 In each event, choose the three particles set {i, j, k} such that

sin θij > acut , sin θjk > acut , sin θki > acut

where 0 < acut <
√

3
2 is a parameter that control the size of the

allowed phase space.

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

x1

x
2

The phase space of
three particles, with
acut = 0.6

Here xi = 2Ei/Q

Tong-Zhi Yang (Zhejiang University) July 2, 2019 13 / 33



Trijet Coplanar Limit for the ETPC

2 Use the kT algorithm to find three jets, we keep the event only if
y3 > ycut, and modify the definition of the ETPC to∑

i∈J1
j∈J2
k∈J3

∫
dσ

EiEjEk
EJ1EJ2EJ3σtot

δ (τp − τijk)

where J1, J2, J3 denote three jets.

The phase space of three
particles, with ycut = 0.1
Here xi = 2Ei/Q
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Using PYTHIA8.2 Preliminary!

Use PYTHIA8.2 [Sjöstrand et al., 2015] to generate events

Turn on/off hadronization

The hadronization effect is roughly 1
Q -dependent

acut = 0.6
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Using PYTHIA8.2 Preliminary!

ycut = 0.1
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This Pythia results can only be used as a reference.

Pythia only contains lowest order hard matrix element, e+e− → qq̄
here, and LL resummation.

Pythia can not estimate the scale uncertainty.

We seek an analytical method to study ETPC in the coplanar limit.
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Factorization

An all order factorization formula in the coplanar limit

1

σ̂0

dσ

dτp
=

∫
D

dυdωH

∫ ∞
−∞

db

2πξ
2 cos (bτp/ξ)SJqJq̄Jg
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Factorization: Kinematics

There are two sources dominate the ETPC in the trijet coplanar limit

The recoil effect of soft radiations.

~ks
ks,y

~p1

~p2

~p3

p1,y

p2,y

p3,y

ŷ

OThe Three-Jet Plane

The soft radiations don’t change the
energy of three jets, only make the
three jets deviate the trijet plane
slightly in the opposite direction.

Collinear fragmentation

~p1
~khi

khi,y

The final state hardron
carrys longitudinal fraction
momentum zhi from it’s

parent jet, i.e. ~khi = zhi ~pi.
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Factorization: Kinematics

There are two sources dominate the ETPC in the trijet coplanar limit

The recoil effect of soft radiations.

~ks
ks,y

~p1

~p2

~p3

p1,y

p2,y

p3,y

ŷ

OThe Three-Jet Plane

∑3
i=1 pi,y = −ks,y,

sin θ1 =
p1,y

|~pi| =
p1,y

Ei

Collinear fragmentation

~p1
~khi

khi,y

sin θi =
khi,y

|~khi |
=

khi,y
zhi Ei

⇒ τijk =
|~p1 × ~p2|
E1E2E3

∣∣∣∣∣khi,xzhi +
khj,y

zhj
+
khk,y

zhk
− ks,y

∣∣∣∣∣+O
(
τ2
p

)ξ
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The Factorization Formula

1

σb

dσ

dτp
=

∫
D

dυdω H(υ, ω, µ)
∑
ijk

∫
dkhi,y

∫
dkhj,y

∫
dkhk,y

∫
dks,y

×
∫
dzhi dz

h
j dz

h
k z

h
i z

h
j z

h
kS(ks,y, µ, ν) δ

(
τp − ξ

∣∣∣∣∣khi,yzhi +
khj,y
zhj

+
khk,y
zhk
− ks,y

∣∣∣∣∣
)

× F1→i(k
h
i,y, z

h
i , µ, ν)F2→j(k

h
j,y, z

h
j , µ, ν)F3→k(khk,y, z

h
k , µ, ν) + power corr. ,

u = (p1 + p2)2, υ = (p1 + p3)2, ω = (p2 + p3)2; i, j, k belong to the
three different jets; σb is the born cross section for e+e− → qq̄

D The domain of the integrals, constrained by the phase space cuts

H The hard function

S The soft function
F TMD fragmentation functions

Fq→h (b, zh) =
1

4zhNc

∑
X

∫
dξ+

2π
e−ip

−
h
ξ+/zh 〈0 |χn(ξ)|X,h〉 /̄n 〈X,h|χ(0) |0〉

ξ =
(
ξ+, ib0/ν, b, 0

)
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Factorization Formula

Use Fourier representation of delta function, Fourier transformed TMD FFs and TMD SF

(1) δ

(
τ − ξ

∣∣∣∣∣khi,yzhi +
khj,y
zhj

+
khk,y
zhk
− ks,y

∣∣∣∣∣
)

=

∫
db

2πξ
2 cos(bτ/ξ) exp

[
ib

(
khi,y
zhi

+
khj,y
zhj

+
khk,y
zhk
− ks,y

)]
,

(2) Fij(
b

zi
, zi, µ, ν) =

∫
dkhy,i exp (i

b

zi
khi,y)Fij(k

h
i,y, zi, µ, ν),

(3) S(b, µ, ν) =

∫
dks,y exp (ibks,y)S(ks,y, µ, ν).

We rewrite the factorization formula as

1

σb

dσ

dτp
=

∫
D

dυdωH(υ, ω, µ)
∑
ijl

∫
db

2πξ
2 cos(bτ/ξ)

∫
dzidzjdzk

(zizjzk)S(b, µ, ν)Fi1(
b

zi
, zi, µ, ν)Fj2(

b

zj
, zj , µ, ν)Fl3(

b

zk
, zk, µ, ν).
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Simplicity of the Factorization Formula

By operator product expansion, the TMDFF can be written as the convolution of the
standard FF and matching coefficient

Fh1(
b

zh
, zh, µ, ν) =

∑
m

fh/m(zh)⊗ Im1(
b

zh
, zh) ·

(
1 +O(Λ2

QCDb
2)
)
.

Using the following equation∑
i

∫
dziziFi1(

b

zi
, zi, µ, ν) =

∑
i,m

∫
dzizi

∫
dτmdxifi/m(xi)Im1(

b

τm
, τm)δ(zi − τmxi)

=
∑
m

∫
dτmτmIm1(

b

τm
, τm)

{∑
i

∫
dxixifi/m(xi) = 1

}
=
∑
m

∫
dτmτmIm1(

b

τm
, τm)≡ J1(b, µ, ν),

we simplify our formula to

1

σ̂0

dσ

dτp
=

∫
D
dυdωH(υ, ω, µ)

∫
db

2πξ
2 cos (bτp/ξ)S(b, µ, ν)Jq (b, µ, ν) Jq̄ (b, µ, ν) Jg (b, µ, ν)
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Hard Function: process dependent part

The hard function incorporates virtual correlations for e+e− → 3 Jets

LO

γ∗/Z γ∗/Z

NLO [ Ellis et al., 1981; Fabricius et al.,

1981]

γ∗/Z γ∗/Z

NNLO(for future work) [Garland et all., 2001]

γ∗/Z γ∗/Z
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Jet Functions: process independent

The jet functions encode the collinear fragmentations, they are universal
and same as for EEC [Moult and Zhu, 2018].

NLO
NNLO(RV) [Ming-xing Luo et al.,

appear soon]

NNLO(RR) [Ming-xing Luo et al., appear soon]
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The soft function: process independent
S (nq, nq, ng, bx) = tr〈0|T

[
YnqYnqYg (0, bx, 0, 0)

]
T
[
Y †nqY

†
nqY

†
g (0, 0, 0, 0)

]
]|0〉

O

bx̂

y

z

Figure: The spatial structure of the ETPC soft function. Each set of Wilson lines
lies in the trijet plane, and their relative displacement is perpendicular to the plane

Use the exponential regulator to deal with the rapidity divergences [Li

et al., 2016]∫
ddkθ

(
k0
)
δ
(
k2
)
→
∫
ddkθ

(
k0
)
δ
(
k2
)
e−2k0τe−γE , ν =

1

τ
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Soft function: Factorization

In general, soft functions involve correlations of multiple Wilson lines and are very
complicated. In our case, the soft functions factorize into multiplication of three dipole
soft functions(at least to two loops)

S (nq, nq̄, ng, bx, µ, ν) = Ŝqq̄ (bx, µ, ν, nq, nq̄) Ŝqg (bx, µ, ν, nq, ng) Ŝq̄g (bx, µ, ν, nq̄, ng) ,

this is the crucial reason that we can go to analytic high order calculations.

Impossible to construct scaling invariant variables from three light-like vectors.

NLO

Figure: Only involve two Wilson
lines

NNLO(RR)

Figure: Can involve three Wilson lines, contribution
cancles when summing all diagrams together [Catani
and Grazzini, 1999]
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Soft function: Factorization

NNLO(RV)[Catani and
Grazzini, 2000]

Figure: The triple color
correlations vanish due to the
color algebra

Tree-level current

J
µ(0)
a (q) =

∑
k

Tak
pµk
pk · q

One-loop soft current

ifabc
∑
i6=j

T
b
i T

c
j

(
p
µ
i

pi · q
−

p
µ
j

pj · q

)(
pi · pj

(pi · q)
(
pj · q

))ε

Color conservation Ta3 = −Ta1 − Ta2 and

ifabcT
a
i T

b
j (T ci + T cj ) = −δijCAT 2

i

=⇒ ifabcT
a
1 T

b
2T

c
3 = −ifabcTa1 T b2 (T c1 + T c2 ) = 0

Furthermore, Ŝij (bx, µ, ν, ni, nj) = Sij

(
bx, µ, ν

√
ni · nj/2

)

where Sij the back-to-back dipole soft functions calculated to three loops[Li and Zhu, 2017].
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Renormalization Group Equations

dH

d lnµ2
=

[
CA + 2CF

2
γcusp (αs) ln

Q2

µ2
+ γH (y, z, αs)

]
H ,

d lnS

d lnµ2
=

[
2CF + CA

2

(
γcusp [αs] ln

µ2

ν2
− γs [αs]

)
+
CA

2
γcusp [αs] ln

(1− u)2u

υω

+CF γcusp [αs] ln
(1− υ)(1− ω)

u

]
,

d lnS

d ln ν2
=

2CF + CA

2

(∫ b20/b
2

µ2

dµ2

µ2
γcusp (αs[µ]) + γr (αs [b0/b])

)
,

dJi

d lnµ2
=

(
−

1

2
Ciγcusp ln

(
2p0
i

)2
ν2

+ γJ,i

)
Ji ,

dJi

d ln ν2
=
Ci

2

(∫ µ2

b20/b
2

dµ2

µ2
γcusp [αs(µ)]− γr [αs (b0/b)]

)
Ji .

All the anomalous dimensions are known to at least three loops
RG invariant condition

γH −
CA + 2CF

2
γs − 2γJ,q − γJ,g = 0
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Renormalization Group Evolution

Setting µ = µj = b0/b, ν = νj = Q,

ν

µ

Q

b0/b

b0/b

Q

(µs, νs)

Soft

Hard
(µH , ·)

(µj , νj)

There is rapidity evolution for the soft function
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Numerical Implementation

Apply the numerical code NLOJET++ [Nagy, 2001, 2003] to calculate
the fixed-order ETPC: 4-jet LO + (5-jet real + 4-jet virtual) NLO

Use two different settings:
1 acut = 0.6 (sin θij > acut , sin θjk > acut , sin θki > acut)
2 ycut = 0.1 (y3 > ycut)

Verify our factorization formula by comparing the predicted singular
fixed-order results with NLOJET++

Resummation + power corrections
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Validation from NLOJET++ Preliminary!

Expanding the factorization formula with αs
4π

, then integrate over b analytically

dΣ

d ln τp
=

∫
D

dυdω

{(αs
4π

)2 (
c1 ln τp + c2

)
+
(αs

4π

)3 (
c3 ln3 τp + c4 ln2 τp + c5 ln τp + c6

)
+O(τ2

p )

}
.

The predicted singular results of dΣ
d ln τp

is consistent with the full fixed-order results

given by NLOJet++, in the τp → 0 limit. So our factorization formula is correct.
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Resummation Preliminary!
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The fixed-order results are unreasonable in the τp → 0 limit,
resummation is necessary in this region

The reduction of scale uncertainties from NLO to NNLL+NLO

The perturbative corrections from NLL+LO to NNLL+NLO are large

NLO LO do not overlap; NLL NNLL overlap, converge
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Conclusions

We initiated the study of a new event shape observable called the
Energy Triple-Product Correlation

Derived an all order factorization formula for the ETPC in the
coplanar limit

Presented the results of NNLL matching with NLO

Thank You!
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