360GeV Extrapolation @ CEPC Higgs Combination

Kaili Zhang

CEPC Physics Workshop

Higgs Physics @ CEPC

$$
\text { CDR: } 1 \mathrm{M} \text { Higgs in } 240 \mathrm{GeV}, 5.6 \mathrm{ab}^{-1}
$$

Process	Cross section	Events in $5.6 \mathrm{ab}^{-1}$
	Higgs boson production, cross section in fb	
$e^{+} e^{-} \rightarrow Z H$	196.2	1.10×10^{6}
$e^{+} e^{-} \rightarrow \nu_{e} \bar{\nu}_{c} H$	6.19	3.47×10^{4}
$e^{+} e^{-} \rightarrow e^{+} e^{-} H$	0.28	1.57×10^{3}
Total	203.7	1.14×10^{6}

CEPC CDR: arxiv:1811.10545 White Paper: arxiv:1810.09037 Combination Report in Oxford;

Existing results:240GeV, 5.6iab

($240 \mathrm{GeV}, 5.6 \mathrm{ab}^{-1}$)	CDR	2019.07	Related Report
$\sigma(Z H)$	0.50\%		
$\sigma(Z H) * \mathrm{Br}(\mathrm{H} \rightarrow \mathrm{bb})$	0.27\%		Yu Bai
$\sigma(Z H) * \operatorname{Br}(\mathrm{H} \rightarrow \mathrm{cc})$	3.3\%		
$\sigma(Z H) * \operatorname{Br}(\mathrm{H} \rightarrow \mathrm{gg})$	1.3\%		
$\sigma(Z H) * \operatorname{Br}(\mathrm{H} \rightarrow \mathrm{WW})$	1.0\%		
$\sigma(Z H) * \operatorname{Br}(\mathrm{H} \rightarrow \mathrm{ZZ})$	5.1\%		Kiuchi
$\sigma(Z H) * \operatorname{Br}(\mathrm{H} \rightarrow \tau \tau)$	0.8\%		Dan Yu
$\sigma(Z H) * \operatorname{Br}(\mathrm{H} \rightarrow \gamma \gamma)$	6.8\%	5.4\%	Fangyi Guo
$\sigma(Z H) * \operatorname{Br}(\mathrm{H} \rightarrow \mu \mu)$	17\%	12\%	Kunlin RAN
$\sigma(\mathrm{vv} H) * \operatorname{Br}(\mathrm{H} \rightarrow \mathrm{bb})$	3.0\%		Hao Liang
$\mathrm{Br}_{\text {upper }}(\mathrm{H} \rightarrow$ inv. $)$	0.41\%	0.2\%	Yuhang Tan
$\sigma(Z H) * \operatorname{Br}(\mathrm{H} \rightarrow Z \gamma)$	16\%		
Width	2.8\%		

Several channels are improved since last November.

Invisible and $\mu \mu$: Redo the analysis. $\gamma \gamma$: Applied MVA in qqyy channel.

See more details in their slides!

κ Framework result

$\mathrm{Z} \rightarrow \mu \mu, \mathrm{H} \rightarrow \tau \tau$ channel, the signal will be $\kappa_{Z}^{2} \kappa_{\tau}^{2} / \Gamma_{H} ;$ For $v v H \rightarrow b b$, it's $\kappa_{W}^{2} \kappa_{b}^{2} / \Gamma_{H}$

See more in Zhen's report!

Relative coupling measurement precision and the 95\% CL upper limit on $\mathrm{BR}_{\text {inv }}^{\mathrm{BSM}}$					
Quantity	10-parameter fit			7-parameter fit	
	CEPC	CEPC+HL-LHC	CEPC	CEPC+HL-LHC	
	1.3%	1.0%	1.2%	0.9%	
κ_{c}	2.2%	1.9%	2.1%	1.9%	
κ_{g}	1.5%	1.2%	1.5%	1.1%	
κ_{W}	1.4%	1.1%	1.3%	1.0%	
κ_{τ}	1.5%	1.2%	1.3%	1.1%	
κ_{Z}	0.25%	0.25%	0.13%	0.12%	
κ_{γ}	3.7%	1.6%	3.7%	1.6%	
κ_{μ}	8.7%	5.0%	-	-	
$\mathrm{BR}_{\text {inv }}^{\text {BSM }}$	$<0.30 \%$	$<0.30 \%$	-	-	
Γ_{H}	2.8%	2.3%	-	-	

$$
\sigma(Z H) 0.5 \%, \quad \kappa_{z} 0.25 \% \text {; }
$$

Except κ_{z}, all the coupling are constrained by Higgs width; Could not be better than half width(1.4\%).

Higher Energy Run

-350~365GeV Run: worthwhile

- Over top threshold, EW/EFT/Theoretical part benefits;
- Larger vvH cross section; Benefit width measurement
- All constrained by width(2.8\%), in current CEPC 240 GeV run, Higgs coupling suffered;
- Fcc-ee/ILC/CLIC all have similar plan
- Temporary benchmark: 2 iab @ 360GeV

The Plan for Fcc-ee (CERN-ACC-2018-0057) : 0.2 iab $350 \mathrm{GeV}+1.5$ iab 365 GeV

- Test the impact to Higgs measurement
- 360 saves 10% energy with respect to 365 GeV
- Not determined yet

Signal Cross Sections

- 240 GeV :
- ZH: 196.9; vvH: 6.2; interference: ~10\% of vvH; about 318:10:1; (Z->vv : vvH = 6.4:1)
- interference are ignored in the following extrapolation.
-350GeV: (vvH ~ 100% Z->vv), (eeH ~ 60\% Z->ee)
- 360GeV: (vvH ~ 117\% Z->vv), (eeH ~ 67% Z->ee)
- 365GeV: (vvH ~ 126\% Z->vv), (eeH ~ 71\% Z->ee)

	fb	240	350	360	365	$360 / 240$
	ZH	196.9	133.3	126.6	123.0	-36%
	WW fusion	6.2	26.7	29.61	31.1	$+377 \%$
	ZZ fusion	0.5	2.55	2.80	2.91	$+460 \%$
	Tot	203.6		159.0		
$2019 / 7 / 1$	Tot Events	1.14 M		0.32 M		

ZZ fusion (2\%) also cannot be ignored.

In 240 GeV , most channels are 4 f bkg dominant, usually ZZ .
$e e \rightarrow t \bar{t} \rightarrow W W^{*} b \bar{b}$ would be 6 jets/ Ilvv+2jets.

Would challenging for jet clustering.

Need further work to validate the performance.
 \title{
Major background cross sections
}
 \title{
Major background cross sections
}

ne

2019711

Extrapolation strategy

- Yields:
scale by cross section;
- Resolution:
- Pick 2 benchmark channels to check the impact
- dimuon: worse resolution; from ${ }^{\sim} 0.3 \mathrm{GeV}$ to 1 GeV ;
- diphoton: better resolution; from $\sim 2.5 \mathrm{GeV}$ to 2 GeV ;
- Mass spectrum:
- Z/H system would stay the same;
- Try scale factors to describe the phase space shift, like $\frac{2}{3}(240 / 360)$.

vvH->bb, Full simulation

- See Hao's slides for further information
- vvH Eff 60+\%;
- Bkg: 4f bkg full simulation, qq scaled from 240 case
- tt MC not ready; Consider qq +20\%;
- 2 d Recoil $q q+\operatorname{Cos} \theta_{q q}$ Fit
- Considering ZH constrain:
- $\sigma(\mathrm{vvH}) * \operatorname{Br}(\mathrm{H} \rightarrow \mathrm{bb}): 0.79 \%$
- 240 GeV : 3%; big improvement;
- ZH->bb (0.63\%) share the anti-correlation -45\%.

Results

	$\begin{gathered} 5.6 a^{-1} \\ 240 \end{gathered}$	$\begin{gathered} 2 a b^{-1} \\ 360 \end{gathered}$	$\begin{gathered} 1.5 \mathrm{ab}^{-1} \\ 360 \end{gathered}$		
$\sigma(Z H)$	0.50\%	1\% ?			
$\sigma(Z H) * \operatorname{Br}(\mathrm{H} \rightarrow \mathrm{bb})$	0.27\%	0.63\%	0.71\%		
$\sigma(Z H) * \operatorname{Br}(\mathrm{H} \rightarrow \mathrm{cc})$	3.3\%	6.2\%	7.2\%		
$\sigma(Z H) * \operatorname{Br}(\mathrm{H} \rightarrow \mathrm{gg})$	1.3\%	2.4\%	2.7\%		
$\sigma(Z H) * \operatorname{Br}(\mathrm{H} \rightarrow \mathrm{WW})$	1.0\%	2.0\%	2.3\%		
$\sigma(Z H) * \operatorname{Br}(\mathrm{H} \rightarrow \mathrm{ZZ})$	5.1\%	12\%	14\%		
$\sigma(Z H) * \operatorname{Br}(\mathrm{H} \rightarrow \tau \tau)$	0.8\%	1.5\%	1.7\%		
$\sigma(Z H) * \operatorname{Br}(\mathrm{H} \rightarrow \gamma \gamma)$	5.4\%	8\%	9.2\%		
$\sigma(Z H) * \operatorname{Br}(\mathrm{H} \rightarrow \mu \mu)$	12\%	29\%	33\%		
$\sigma(\mathrm{vvH}) * \mathrm{Br}(\mathrm{H} \rightarrow \mathrm{bb})$	3\%	0.79\%	0.91\%		
$\mathrm{Br}_{\text {upper }}(\mathrm{H} \rightarrow$ inv. $)$	0.2\%	$\$ & $\$ \hline $\sigma(Z H) * \operatorname{Br}(\mathrm{H} \rightarrow Z \gamma)$	16\%	25\%	29\%
Width	2.8\%	~0.8\%			

[^0]
Fcc:

$\sqrt{s}(\mathrm{GeV})$	240		365	
Luminosity $\left(\mathrm{ab}^{-1}\right)$	5		1.5	
$\delta(\sigma \mathrm{BR}) / \sigma \mathrm{BR}(\%)$	HZ	$\nu \bar{\nu} \mathrm{H}$	HZ	
$\mathrm{\nu} \overline{\mathrm{v}} \mathrm{H}$				
$\mathrm{H} \rightarrow$ any	± 0.5	± 0.9		
$\mathrm{H} \rightarrow \mathrm{b} \overline{\mathrm{b}}$	± 0.3	± 3.1	± 0.5	
$\mathrm{H} \rightarrow \mathrm{c}$	± 0.9			
$\mathrm{H} \rightarrow \mathrm{c} g$	± 2.2	± 6.5	± 10	
$\mathrm{H} \rightarrow \mathrm{W}^{+} \mathrm{W}^{-}$	± 1.9	± 3.5	± 4.5	
$\mathrm{H} \rightarrow \mathrm{ZZ}$	± 1.2	± 2.6	± 3.0	
$\mathrm{H} \rightarrow \tau \tau$	± 4.4	± 12	± 10	
$\mathrm{H} \rightarrow \gamma \gamma$	± 0.9	± 1.8	± 8	
$\mathrm{H} \rightarrow \mu^{+} \mu^{-}$	± 9.0	± 18	± 22	
$\mathrm{H} \rightarrow$ invisible	± 19	± 40		

Generally, since the extrapolation is not so accurate, results are comparable.

For $\mathrm{H} \rightarrow \gamma \gamma$ and $\mathrm{H} \rightarrow \mu \mu$, resolution changes considered. Keep diphoton resolution $\sim(2.5 \mathrm{GeV}): 10.2 \%$ 2.5 GeV to 2 GeV : 9.2%

Keep dimuon resolution $\sim(0.3 \mathrm{GeV})$: 23%
0.3 GeV to 1 GeV : 29%

360 GeV Plots

Inclusive: 0.92\% -> 1.72\%

Resolution: 2 GeV ;

Resolution: 1 GeV ;

240 GeV Plots

Discussion

- Current extrapolation
- Mainly scale yields
- bkg could be even lower if correct analysis strategies are applied.
- Can not deal with W / Z fusion related channels and $\sigma(Z H)$
- several channels are studied with $m_{e e}^{r e c o i l}$ and $m_{\text {missing }}$ would suffer;
- Preliminary estimation, need further work

backup

Correlation matrix

vvH->bb 240 GeV

Higgs width

- Absolute width measurement by 2 dominant channels:

$$
\Gamma_{H}=\frac{\Gamma_{H \rightarrow Z Z}}{B r(H \rightarrow Z Z)} \propto \frac{\sigma(Z H)}{B r(H \rightarrow Z Z)} \text { and } \Gamma_{H}=\frac{\Gamma_{H \rightarrow b b}}{B r(H \rightarrow b b)} \propto \frac{\sigma(v v H \rightarrow v v b b)}{B r(H \rightarrow b b) B r(H \rightarrow W W)}
$$

- Since $\sigma(\mathrm{vvH}) * \operatorname{Br}(\mathrm{H} \rightarrow \mathrm{bb}): 0.79 \%$
- But width correlated with all channels
- $v v H \rightarrow v v b b$ and $\mathrm{ZH} \rightarrow b b-45 \% \quad$-> would worse the result
- Combined fit in 10κ framework:

$$
\Delta\left(\Gamma_{H}\right) \approx 0.8 \%
$$

Synergy of HL-LHC

- HL-LHC S2 estimation; has wonderful prediction on such channels like $\gamma \gamma$.

$$
B_{\gamma \gamma}: \sigma * \operatorname{Br}(H \rightarrow \gamma \gamma)
$$

Kappa Synergy

Collider	HL-LHC	ILC $_{250}$	CLIC $_{380}$	LEP $_{240}$	CEPC $_{250}$	FCC-ee		
$240+365$								
Lumi $\left(\mathrm{ab}^{-1}\right)$	3	2	1	3	5	5_{240}	$+1.5_{365}$	+ HL-LHC
Years	25	15	8	6	7	3	+4	
$\delta \Gamma_{\mathrm{H}} / \Gamma_{\mathrm{H}}(\%)$	SM	3.6	4.7	3.6	2.8	2.7	$\mathbf{1 . 3}$	1.1
$\delta g_{\mathrm{HZZ}} / g_{\mathrm{HZZ}}(\%)$	1.5	0.3	0.60	0.32	0.25	0.2	$\mathbf{0 . 1 7}$	0.16
$\delta g_{\mathrm{HWW}} / g_{\mathrm{HWW}}(\%)$	1.7	1.7	1.0	1.7	1.4	1.3	$\mathbf{0 . 4 3}$	0.40
$\delta g_{\mathrm{Hbb}} / g_{\mathrm{Hbb}}(\%)$	3.7	1.7	2.1	1.8	1.3	1.3	$\mathbf{0 . 6 1}$	0.56
$\delta g_{\mathrm{Hcc}} / g_{\mathrm{Hcc}}(\%)$	SM	2.3	4.4	2.3	2.2	1.7	$\mathbf{1 . 2 1}$	1.18
$\delta g_{\mathrm{Hgg}} / g_{\mathrm{Hgg}}(\%)$	2.5	2.2	2.6	2.1	1.5	1.6	$\mathbf{1 . 0 1}$	0.90
$\delta g_{\mathrm{H} \tau \tau} / g_{\mathrm{H} \tau \tau}(\%)$	1.9	1.9	3.1	1.9	1.5	1.4	$\mathbf{0 . 7 4}$	0.67
$\delta g_{\mathrm{H} \mu \mu} / g_{\mathrm{H} \mu}(\%)$	4.3	14.1	n.a.	12	8.7	10.1	$\mathbf{9 . 0}$	3.8
$\delta g_{\mathrm{H} \gamma \gamma} / g_{\mathrm{H} \gamma \gamma}(\%)$	1.8	6.4	n.a.	6.1	3.7	4.8	$\mathbf{3 . 9}$	1.3
$\delta g_{\mathrm{Htt}} / g_{\mathrm{Htt}}(\%)$	3.4	-	-	-	-	-	-2	3.1
$\mathrm{BR} \mathrm{EXO}_{\mathrm{EXO}}(\%)$	SM	<1.7	<2.1	<1.6	<1.2	<1.2	$<\mathbf{1 . 0}$	$<\mathbf{1 . 0}$

[^0]: *: $\sigma(Z H)$ estimated as 1%.

