Lepton Identification in CEPC

CEPC Physics Workshop Dan YU

Motivation

- Essential to the precise Higgs measurements
- Jet flavor tagging and the jet charge measurement
- Higgs boson generated together with leptons

LICH

- LICH (Lepton Identification for Calorimeter with High granularity)
 - Input: 24 variables from reconstructed charged particle
 - Tool: TMVA
 - Training samples: Single particle: e, $\mu,\,\pi$ (1 GeV \sim 120 GeV)
 - Output: likelihood

Variables:dE/dx

• For a track in TPC, the distribution of energy loss per unit of depth follows an approximately Landau distribution.

Variables: Fractal Dimension

- Describe the self-similar behavior of shower spatial configurations (compactness of the particle shower)
 - $FD_{\beta}=\langle \log(R_{\alpha,\beta})/\log a \rangle +1$ where $R_{\alpha,\beta} = N_{\beta}/N_{\alpha}$, a and β are scales at which the shower is analysed.
 - Average over range: 1cm 120cm

800

600

400

200

0

0

Variables: others

- Proportion of energy: Energy deposit in the first 10 layers in ECAL to the entire ECAL, or the energy deposit in a cylinder around the incident direction with a radius of 1 and 1.5 Moliere radius.
- Distance(max, min, avr) between hit and track / axis
- Number of hits / number of layers hit by the shower
- Depth

• ...

CEPC Physics WS @ PKU

Migration Matrix at 40GeV (LICH)				Migration Matrix for ALEPH PID (> 2GeV)(Eur.Phys.J.C20:401-430,2001)				
Туре	e [–] like	μ^- like	π^+ like	Туре	e [–] like	μ^- like	π^+ like	undefined
<i>e</i> ⁻	99.71 ± 0.08	< 0.07	0.21 ± 0.07	e	99.57 ± 0.07	< 0.01	0.32 ± 0.0	0.09 ± 0.04
μ^-	< 0.07	99.87 ± 0.08	0.05 ± 0.05	μ^-	< 0.01	99.11 ± 0.08	0.88 ± 0.08	0.01 ± 0.01
π^+	0.14 ± 0.05	0.35 ± 0.08	99.26 ± 0.12	π^+	0.71 ± 0.04	0.72 ± 0.04	98.45 ± 0.06	0.12 ± 0.03

Physics Events

CEP

- Sample: Zpole->bb
- High Energy:
 - easy to separate
- Low Energy:
 - muons mixed with pions
 - large statistics of pions
 - What is wrong with pion (2GeV 4GeV)?

Likelihood distribution

- The endcap is normal
- Training files smaller for low energy charged particles shooting to the barrels
- Low energy pions more likely to be looks like a muon

Dan YU

Zpole->bb

Tau identification

- TAURUS: A dedicate T reconstruction package
- Leading T pair as the Higgs products

Summary

- Comparable to ALEPH, mis-identification rates significantly improved
- Currently the best performance
- Integrated to ILCSOFT & applied for preparation of CEPC CDR

Thank you!