MVA method in $\mathrm{ZH} \rightarrow$ $q q \gamma \gamma$ analysis in CEPC

Fangyi Guo, Yaquan Fang, Xinchou Lou

Institute of High Energy Physics, CAS

CEPC Physics Workshop
$3 r d$ July, 2019, Peking University

Content

Review of CEPC CDR

MC sample and simulation
Selection adjustment
MVA method
2-D signal and background fit
Results
Further work
Conclusion

Review of CEPC CDR

CEPC CDR release: Nov 2018, IHEP

Higgs $\rightarrow \gamma \gamma$ physics analysis:

- Design point at CEPC_v4, $\sqrt{s}=240 \mathrm{GeV}, \mathcal{L}=$ $5.6 a b^{-1}$
- Whizard 1.95 + MoccaC generator, dedicated fast simulation based on parametrized detector response.
- Considered $H \rightarrow \gamma \gamma$ signal and 2 fermion dominant background
- Result: $\delta(\operatorname{Br}(H \rightarrow \gamma \gamma) \times \sigma(Z H))=6.84 \%$ in 3 combined channel, and 9.84% in $q \bar{q} \gamma \gamma$ channel.

Could be improved by applying MVA method

Figure1. di-photon invariant mass distributions in 3 sub-channel

Results

The combination of three sub-channel provides a final result of $\sigma(Z H) \times B R(H \rightarrow \gamma \gamma)$ measurement precision

Sub-channel	$q \bar{q} \gamma \gamma$	$\bar{l} \gamma \gamma$	$v \bar{v} \gamma \gamma$	combined
precision	9.84%	23.7%	10.5%	6.84%

Arxiv: 1810.09037
Report in 2018 CEPC WS

MC sample and simulation

In order to keep consistent with CDR:
MC sample:

- Signal: $e e \rightarrow Z H \rightarrow q \bar{q} \gamma \gamma, 100$ k events.
- Background: ee $\rightarrow q q+$ radiation photons, 20M events.

Simulation and event reconstruction

- Fast simulation: smear the objects with the resolution and efficiency with parametrized detector response, $\frac{\Delta E}{E} \sim \frac{16 \%}{\sqrt{E}} \oplus 1 \%$
- Event reconstruction: FSClasser FastJetClustering processer. reconstructed 2 on-shell photon with $m_{\gamma \gamma} \sim 125 \mathrm{GeV}$ and 2 jets define: γ_{1} / j_{1} as photon/jet with lower energy, and γ_{2} / j_{2} as higher energy one.

Event selection adjustment

Release the event selection criteria for the further MVA method

> Selection in CDR: $$
\begin{array}{l}E_{\gamma 1}>35 \mathrm{GeV} \\ 35 \mathrm{GeV}<E_{\gamma 2}<96 \mathrm{GeV} \\ \cos \theta_{\gamma \gamma}>-0.95, \cos \theta_{j j}>-0.95 \\ p T_{\gamma 1}>20 \mathrm{GeV}, p T_{\gamma 1}>30 \mathrm{GeV} \\ 110 \mathrm{GeV}<m_{\gamma \gamma}<140 \mathrm{GeV} \\ 125 \mathrm{GeV}<E_{\gamma \gamma}<145 \mathrm{GeV} \\ \min \left|\cos \theta_{\gamma j}\right|<0.9\end{array}
$$

Old	signal	background
Total efficiency	53.08%	0.010%
Scaled to $5.6 a b^{-1}$	923.13	29875.6

Present:

$$
\begin{aligned}
& E_{\gamma 1}>25 \mathrm{GeV} \\
& 35 \mathrm{GeV}<E_{\gamma 2}<96 \mathrm{GeV} \\
& \cos \theta_{\gamma \gamma}>-0.95, \cos \theta_{j j}>-0.95 \\
& p T_{\gamma 1}>20 \mathrm{GeV}, p T_{\gamma 1}>30 \mathrm{GeV} \\
& 110 \mathrm{GeV}<m_{\gamma \gamma}<140 \mathrm{GeV} \\
& E_{\gamma \gamma}>120 \mathrm{GeV} \\
& \min \left|\cos \theta_{\gamma j}\right|<0.9
\end{aligned}
$$

New	signal	background
Total efficiency	53.34%	0.010%
Scaled to $5.6 \mathrm{ab}^{-1}$	927.65	31587.6

MVA method

Considered variables:

- P, E, pT, $\cos \theta$ of two photon and 2 jets
- P, E, pT, $\cos \theta$, recoil mass, pTt, Pt* of di-photon system
- P, E, mass, recoil mass, $\cos \theta$ of jj system
- $\Delta P, \Delta E, \Delta \phi$ between two photon, $\gamma \gamma$-qq
- Cosine angle between 2 photon, 2 jets, 1 photon and 1 jet, $\gamma \gamma$ and jj system.
- Minimum ΔR between any photon and jet

Totally 42 variables
Pt*: Di-photon P projected perpendicular to the di-
photon thrust axis.(similar as pTt but replace pT with P)
Separation power:

$$
\mathrm{pTt}=\left|\left(\overrightarrow{P_{1}}+\overrightarrow{P_{2}}\right) \times \frac{\overrightarrow{P_{1}}-\overrightarrow{P_{2}}}{\left|\overrightarrow{P_{1}}-\overrightarrow{P_{2}}\right|}\right|
$$

$$
<S^{2}>=\frac{1}{2} \int \frac{\left(\hat{y}_{s}(y)-\hat{y}_{b}(y)\right)^{2}}{\hat{y}_{s}(y)+\hat{y}_{b}(y)} d y .
$$

y : discriminating variable

$\hat{y}_{S}(y)$ and $\hat{y}_{B}(y)$: the distributions of the variable for signal and background samples

MVA method

Variable correlation matrix

First step: remove high $m_{\gamma \gamma}$-related variable $\quad\left|\operatorname{Corr}_{v-m_{\gamma \gamma}}\right|<30 \%$
Second step: remove high co-related variables $\left|\operatorname{Corr}_{v_{1}-v_{2}}\right|<40 \%$

MVA method

Remaining variables:

Variable	Definition	$\left\langle S^{2}\right\rangle$
$p T_{\gamma 1} / p T_{\gamma 2}$	pT of $\gamma 1$ or $\gamma 2$	$0.39 / 0.30$
$\cos \theta_{\gamma 2}$	Cosine polar angle of $\gamma 2$	0.39
$\left\|\Delta \Phi_{\gamma \gamma}\right\|$	$\|\Delta \Phi\|$ between 2 photon	0.30
$\min \Delta R_{\gamma, j}$	Minimum ΔR between photon and jet	0.09
$\cos \theta_{j 1}$	Cosine polar angle of $j 1$	0.08
$p T_{j 2}$	pT of $j 2$	0.08
$E_{j 1}$	Energy of $j 1$	0.03
$\cos \theta_{\gamma 2-j 2}$	Cosine value of the angle between $\gamma 2$ and $j 2$	0.03
$\cos \theta_{\gamma 1-j 1}$	Cosine value of the angle between $\gamma 1$ and $j 1$	0.02
$\left\|\Delta \Phi_{\gamma \gamma-j j}\right\|$	$\|\Delta \Phi\|$ between $\gamma \gamma$ and $j j$ system	0.01
$\cos \theta_{\gamma \gamma-j j}$	Cosine value of the angle between $\gamma \gamma$ and $j j$ system	0.01

BDT training parameter:

"BDTG","NTrees=900:nEventsMin=50:BoostType=Grad:Shrinkage=0.06:UseBaggedGrad:GradBaggingFracti on=0.6:nCuts=20:MaxDepth=3"

MVA method

[nput variable: minDellar_y_]

MVA variables distribution for signal(blue) and background(red)

MVA method

MVA variables distribution(left) and BDT response(right) for signal(blue) and background(red)
\mid Corr $_{m_{\gamma \gamma}-\text { BDTout }} \mid$ is 5.4% in signal and 17% in background

2-D signal and background fit

Fit the sample in 2 dimension

- Di-photon invariant mass $m_{\gamma \gamma}$

Signal: Gaussian PDF
Background: $2^{\text {nd }}$ polynomial exponential PDF $P D F_{m_{\gamma \gamma}}=\mu \times N_{s i g}^{S M} \times P D F_{s i g}+N_{b k g} \times P D F_{b k g}$

- BDT response (\mid Corr $_{m_{\gamma \gamma}-B D T} \mid<20 \%$)

Binned PDF for signal and background

$$
P D F_{B D T}=\mu \times N_{s i g}^{S M} \times P D F_{s i g}+N_{b k g} \times P D F_{b k g}
$$

- $P D F_{2 D}=P D F_{m_{\gamma \gamma}} \times P D F_{B D T}$

Results

Fit result in $e e \rightarrow Z H \rightarrow q q \gamma \gamma$ channel

$$
\mu=1.000 \pm 0.066
$$

	$q q y \gamma$ channel	3 Combined channel
Pre MVA (CDR result)	9.84%	6.80%
After MVA	6.56%	5.39%
Improvement	33%	21%

*combined results are based on MVA $q q \gamma \gamma+$ no MVA $(l l \gamma \gamma+\nu v \gamma \gamma)$

Future work

MVA method in $Z H \rightarrow l l \gamma \gamma, Z H \rightarrow \nu \nu \gamma \gamma$ channel

- Estimation: if the same improvement(30\%) could be reached in these two channel
lly channel: $23.7 \% \Rightarrow 16.6 \%$
$v v \gamma \gamma$ channel: $10.5 \% \Rightarrow 7.4 \%$
combined results after MVA: ~4.7\%

Simulation sample

- Update the fast simulation sample to full simulation

Signal: broaden the $m_{\gamma \gamma}$ distribution, lose $\sim 7.5 \%$ events
Background: include more high energy photon, might be excluded by reconstruction algorithm.

Conclusion

MVA method improvement in CEPC $H \rightarrow \gamma \gamma$ analysis

- $q q \gamma \gamma$ channel has been tested: 33% improvement in one sub-channel, reaching the result $\delta(\mathrm{Br} \times \sigma)=$ 6.56\%
- Prospect: 4.7% combined precision could be reached after MVA in 3 channels

Next step towards TDR

- Full simulation samples are ready, but a accurate reconstruction algorithm is necessary
- Based on previous study, a $\sim 20 \%$ decrease would appear after converting to full simulation

Back up

Correlation matrix (after removing $m_{\gamma \gamma}$-related variables)

Correlation Matrix (signal)

Correlation Matrix (background)

