

MVA method in $ZH \rightarrow qq\gamma\gamma$ analysis in CEPC

<u>Fangyi Guo</u>, Yaquan Fang, Xinchou Lou Institute of High Energy Physics, CAS

CEPC Physics Workshop 3rd July, 2019, Peking University

Content

Review of CEPC CDR

MC sample and simulation

Selection adjustment

MVA method

2-D signal and background fit

Results

Further work

Conclusion

Review of CEPC CDR

CEPC CDR release: Nov 2018, IHEP

Higgs $\rightarrow \gamma \gamma$ physics analysis:

- $^{\circ}\,$ Design point at CEPC_v4, $\sqrt{s}=240 GeV, \mathcal{L}=5.6 a b^{-1}$
- Whizard 1.95 + MoccaC generator, dedicated fast simulation based on parametrized detector response.
- Considered $H \rightarrow \gamma \gamma$ signal and 2 fermion dominant background
- Result: $\delta(Br(H \to \gamma \gamma) \times \sigma(ZH))=6.84\%$ in 3 combined channel, and 9.84% in $q\bar{q}\gamma\gamma$ channel.
- Could be improved by applying MVA method

Results

The combination of three sub-channel provides a final result of $\sigma(ZH) \times BR(H \rightarrow \gamma\gamma)$ measurement precision

Sub-channel	$q\overline{q}\gamma\gamma$	ΙĪγγ	ν⊽γγ	combined
precision	9.84%	23.7%	10.5%	6.84%

Arxiv: <u>1810.09037</u> <u>Report in 2018 CEPC WS</u>

MC sample and simulation

In order to keep consistent with CDR:

MC sample:

- Signal: $ee \rightarrow ZH \rightarrow q\bar{q}\gamma\gamma$, 100k events.
- Background: $ee \rightarrow qq$ +radiation photons, 20M events.

Simulation and event reconstruction

- Fast simulation: smear the objects with the resolution and efficiency with parametrized detector response, $\frac{\Delta E}{E} \sim \frac{16\%}{\sqrt{E}} \bigoplus 1\%$
- Event reconstruction: FSClasser FastJetClustering processer.

reconstructed 2 on-shell photon with $m_{\gamma\gamma}$ ~125GeV and 2 jets define: γ_1/j_1 as photon/jet with lower energy, and γ_2/j_2 as higher energy one.

Event selection adjustment

Release the event selection criteria for the further MVA method

Selection in CDR: $E_{\gamma 1} > 35 GeV$ $35 GeV < E_{\gamma 2} < 96 GeV$ $cos \theta_{\gamma \gamma} > -0.95, cos \theta_{jj} > -0.95$ $pT_{\gamma 1} > 20 GeV, pT_{\gamma 1} > 30 GeV$ $110 GeV < m_{\gamma \gamma} < 140 GeV$ $125 GeV < E_{\gamma \gamma} < 145 GeV$ $min |cos \theta_{\gamma j}| < 0.9$

Old	signal	background
Total efficiency	53.08%	0.010%
Scaled to 5.6 ab^{-1}	923.13	29875.6

Present:

 $E_{\gamma 1} > 25 GeV$ $35 GeV < E_{\gamma 2} < 96 GeV$ $cos \theta_{\gamma \gamma} > -0.95, cos \theta_{jj} > -0.95$ $pT_{\gamma 1} > 20 GeV, pT_{\gamma 1} > 30 GeV$ $110 GeV < m_{\gamma \gamma} < 140 GeV$ $E_{\gamma \gamma} > 120 GeV$ $min |cos \theta_{\gamma j}| < 0.9$

New	signal	background
Total efficiency	53.34%	0.010%
Scaled to 5.6 ab^{-1}	927.65	31587.6

Considered variables:

- P, E, pT, *cosθ* of two photon and 2 jets
- P, E, pT, $cos\theta$, recoil mass, pTt, Pt* of di-photon system
- P, E, mass, recoil mass, $cos\theta$ of jj system
- ΔP , ΔE , $\Delta \phi$ between two photon, $\gamma \gamma$ -qq
- Cosine angle between 2 photon, 2 jets, 1 photon and 1 jet, $\gamma\gamma$ and jj system.
- $\,\circ\,$ Minimum ΔR between any photon and jet

Totally 42 variables

Separation power:

$$\langle S^2 \rangle = \frac{1}{2} \int \frac{(\hat{y}_s(y) - \hat{y}_b(y))^2}{\hat{y}_s(y) + \hat{y}_b(y)} dy.$$

Pt*: Di-photon P projected perpendicular to the diphoton thrust axis.(similar as pTt but replace pT with P) pTt = $|(\overrightarrow{P_1} + \overrightarrow{P_2}) \times \frac{\overrightarrow{P_1} - \overrightarrow{P_2}}{|\overrightarrow{P_1} - \overrightarrow{P_2}|}|$

y: discriminating variable $\hat{y}_s(y)$ and $\hat{y}_B(y)$: the distributions of the variable for signal and background samples

Variable correlation matrix

First step: remove high $m_{\gamma\gamma}$ -related variable Second step: remove high co-related variables

 $|Corr_{v-m_{\gamma\gamma}}| < 30\%$ $|Corr_{v_1-v_2}| < 40\%$

2019/7/3

Remaining variables:

Variable	Definition	$\langle S^2 \rangle$
$pT_{\gamma 1}$ / $pT_{\gamma 2}$	pT of $\gamma 1$ or $\gamma 2$	0.39 / 0.30
$cos\theta_{\gamma 2}$	Cosine polar angle of $\gamma 2$	0.39
$ \Delta \Phi_{\gamma\gamma} $	$ \Delta \Phi $ between 2 photon	0.30
$min\Delta R_{\gamma,j}$	Minimum ΔR between photon and jet	0.09
$cos \theta_{j1}$	Cosine polar angle of <i>j</i> 1	0.08
pT_{j2}	pT of <i>j</i> 2	0.08
E_{j1}	Energy of <i>j</i> 1	0.03
$cos\theta_{\gamma 2-j2}$	Cosine value of the angle between $\gamma 2$ and $j 2$	0.03
$cos\theta_{\gamma 1-j1}$	Cosine value of the angle between $\gamma 1$ and $j 1$	0.02
$ \Delta \Phi_{\gamma\gamma-jj} $	$ \Delta \Phi $ between $\gamma \gamma$ and <i>jj</i> system	0.01
$cos\theta_{\gamma\gamma-jj}$	Cosine value of the angle between $\gamma\gamma$ and jj system	0.01

BDT training parameter:

"BDTG","NTrees=900:nEventsMin=50:BoostType=Grad:Shrinkage=0.06:UseBaggedGrad:GradBaggingFracti on=0.6:nCuts=20:MaxDepth=3"

MVA variables distribution for signal(blue) and background(red)

MVA variables distribution(left) and BDT response(right) for signal(blue) and background(red)

 $|Corr_{m_{\gamma\gamma}-BDTout}|$ is 5.4% in signal and 17% in background

2-D signal and background fit

Fit the sample in 2 dimension

• Di-photon invariant mass $m_{\gamma\gamma}$

Signal: Gaussian PDF

Background: 2nd polynomial exponential PDF Р

$$PDF_{m_{\gamma\gamma}} = \mu \times N_{sig}^{SM} \times PDF_{sig} + N_{bkg} \times PDF_{bkg}$$

• BDT response (
$$|Corr_{m_{\gamma\gamma}-BDT}| < 20\%$$
)
Binned PDF for signal and background
 $PDF_{BDT} = \mu \times N_{sig}^{SM} \times PDF_{sig} + N_{bkg} \times PDF_{bkg}$

•
$$PDF_{2D} = PDF_{m_{\gamma\gamma}} \times PDF_{BDT}$$

Results

Fit result in $ee \rightarrow ZH \rightarrow qq\gamma\gamma$ channel

 $\mu = 1.000 \pm 0.066$

	$qq\gamma\gamma$ channel	3 Combined channel
Pre MVA (CDR result)	9.84%	6.80%
After MVA	6.56%	5.39%
Improvement	33%	21%

*combined results are based on MVA $qq\gamma\gamma$ + no MVA $(ll\gamma\gamma + \nu\nu\gamma\gamma)$

FCC-ee case:

- 3% @240GeV, 10ab⁻¹, based on CMS ECal resolution, <u>TLEP physics, 2013</u>
- 9% @240GeV, 5ab⁻¹, <u>FCC-ee CDR,</u> 2018

Future work

MVA method in $ZH \rightarrow ll\gamma\gamma$, $ZH \rightarrow \nu\nu\gamma\gamma$ channel

• Estimation: if the same improvement(30%) could be reached in these two channel

ll $\gamma\gamma$ channel: 23.7% \implies 16.6% $\nu\nu\gamma\gamma$ channel: 10.5% \implies 7.4%

combined results after MVA: ~4.7%

Simulation sample

- Update the fast simulation sample to full simulation
 - Signal: broaden the $m_{\gamma\gamma}$ distribution, lose ~7.5% events
 - Background: include more high energy photon, might be excluded by reconstruction algorithm.

Conclusion

MVA method improvement in CEPC $H \rightarrow \gamma \gamma$ analysis

- $qq\gamma\gamma$ channel has been tested: 33% improvement in one sub-channel, reaching the result $\delta(Br \times \sigma) = 6.56\%$
- Prospect: 4.7% combined precision could be reached after MVA in 3 channels

Next step towards TDR

- Full simulation samples are ready, but a accurate reconstruction algorithm is necessary
- Based on previous study, a ~20% decrease would appear after converting to full simulation

Back up

Correlation matrix (after removing $m_{\gamma\gamma}$ -related variables)

Linear correlation coefficients in % 100 12-8 100 osTheta_yy_jj 2931 5 5 -192039 5 5 - 3 $\Delta Phi_{\gamma\gamma,jj} = 1$ $\Delta P_{\gamma\gamma,jj} = 2 - 3$ ninDeltaR_y_j = 1328 -100 1 31522 -242354 1 1 2 100-1-8 80 -82821 -2 1 -2 1 -1919 3 4 - 7 -3-3-3-300 44 66 osTheta_y2j2 -2 2 29734900-3 60 osTheta_y2j1 3 2 -72280049-3 2 55 44 osTheta_y1j2 3 2 1-3 1 -4-4 2 -49002873-3 osTheta_y1j1 2 2 1-4 2-1 -6-6 3 100497229-3 40 CosTheta -97 -165 100 -1576 m; -3 -1010 2 454200 3 2 1 3-754 1-3 22912 20 p_j1 -3 E_j1 -3 5 5920 940042 -6-4-4-4 4<mark>2</mark>3 15721 1009445 -6-4-5-4 324 -1-1 cos_θ, -646 -73 -7000 0 76 cost 9 1 -112 10970 -**15**-1 pT. -6-500 139 -20 44 2 1 -20 pT^P 100-5 575929 -4-3-2-22815 7-11 DeltaPhi_yy 100 -6 612 55 2 -8 3 -10 CosTheta_yy -97 1273 -40 100 166 m_{γγ} 131300 -1 7 5 2 p_y2 4348 1000013 4 5 6 419 -10 -60 E_y2 1000013 -10 4 5 6 4 1 9 1-46 9 -6 cos0 -65 cosť -80 pT 4343 5 -3 300 1211 7 2 2 2 2 2 2 2 8 - 3 pT² 00 3 -4343 7 6-7-18 -3-3 -2-3-3-213 2 -100PTPTCose & Balta Cose ATPTCose & P. /7, Cose & Cose hpsTheta yy

Correlation Matrix (signal)

Correlation Matrix (background)

Linear correlation coefficient	ents in %	100
osTheta_yy_jj 3121 4 - 42525 5 - 221945 1 - 2 - 2 - 2 1 - 6 - 3 20 - 8	100	100
ΔPhi _{yyj} -2 -1 1 4 4 4 2 -2 3 -1 3 3 -3 -2 -2 1 -1 -1 1	00	
ΔP _{γγ,i} 10 4 2 5 510 1-2119 4-6-272660-4 3-3-3 1-6 <mark>00</mark>	-8-	80
ninDeltaR_y_i 2935 2 - 21919 1 - 221222-5 3 1717 3 - 5 -8 -4 -4 00-6	-120	
osTheta_y2j2 -2 3030 5 5 222 6-3 20 7 -8 -7 3 212 664 500 -4 1	-1-3	60
osTheta_y2j1 -2 -12630 4 4 626 -1 31015 -4 -5 72667240045 -4 -3	1	00
osTheta_y1j2 32931 8 8 1124 1-5 41411-6-7 52343002466-8-3		40
osiheta_yiji 13131 7 7 723 4-6-21311-4-3 -2200436721-5 3	-2 -6	40
	-2 1	
	-3-2	20
	3-2	
	<u> - 2</u>	0
$\cos \theta_2$ -7 1440 5 5 -74-5 5 -10000 4 5 7 -111 5 7 5-0 $\cos \theta_1$ A 11 7 1 1 2 9 2 3 00060 9 8 2 012141020 5 A		U
	45	
PT ² 211 4-3 40017 3 3696530 1 6 5 31001	210	-20
DeltaPhi vy 2425-2 2121212 300 415 2 3 1 1 -3 4 1 1 623 1	-2.21	
CosTheta vy 5 3170-5-5 100 3 1 74 2 4 39823242622	2.2	_40
$m_{\gamma\gamma}$ 12-9-2 1-3-3 00 12 -16-3 2 2 7 711 6 2 110	-4 5	-10
p y2-2721 -10000-3-512 -9 -1 5-3-215 5 7 8 4 519 5	425	
E y2-2721 -10000-3-512 -9-1 5-3-215 5 7 8 4 519 5	425	-60
cosθ _{y2} 5 - 8700-1 -1 170 2 -3 1 -748 -6831313930-2	1-4	
cosθ _{v1} -4 30987 -231-2 4-21117 1 2 3131292630 2 2	-14 -	-80
PI 2000 3 -12121-9 2511 8 -5 -310 1 3 -1 -35 4	21	
PI 0020-4 5272712 524-223 4-7 -3 -3 -6 -5 2 -2 -22910	-2-31	100
PTPTCOGOG P. M. C.D. RTPTCOGOG D. M. COC. C.C. DMA	P1PCon	-100
N V2 VI V2 V	Bagy Th	eta
- YYY 11 - P4994	ESPERIE_j	NY.