Triple J/ψ production at SPPC

Yu-Jie Zhang

Beihang Univeisity

CEPC Physics Workshop @ PKU

Based on Hua-Sheng Shao, YJZ, PRL122(2019)192002/Arxiv:1902.04949

July 2, 2019

Introduction	The frame of Calculation	Summar

Outline

Introduction

- Multiparton scattering
- Quarkonium productions

2 The frame of Calculation

3 Numerical Result of $J/\psi + J/\psi + J/\psi + X$

3 Summary

Introduction

Multiparton interaction

Multiparton interaction at SPPC and LHC

- Multiparton interaction (MPI) is necessary to study the standard model and to search for beyond the standard model signatures (1310.8042, and so on).
- Multiparton interaction physics at SPPC is more important than that at LHC.

Figure: Zjj production, Cao, Liu, Xie, Yan, 1710.06315.

SPS, DPS, and TPS

SPS, DPS, and TPS

- Single parton scattering (SPS) / Double-parton scattering (DPS): involve one / two partons in each hadron colliding.
- Triple-parton scattering (TPS): involve three partons in each hadron colliding. TPS are absent due to their more complicated final states and much fewer yields.

Figure: SPS/DPS/TPS triple J/ψ production at SPPC

MPI

MPI

- The cross sections of MPI are either strongly model dependent or assuming no correlation between MPI.
- We assume no correlation between MPI.
- The DPS studies at the LHC and Tevatron suggest that no correlation assumption is a rather good approximation.
- A N-parton scattering (NPS) cross-section (1708.07519)

$$\sigma_{f_1\cdots f_N}^{\text{NPS}} = \frac{m}{N!} \frac{\prod_{i=1}^N \sigma_{f_i}^{\text{SPS}}}{(\sigma_{\text{eff},N})^{N-1}},$$
(1)

Introduction	The frame of Calculation	Summary
Multiparton scattering		
NPS		

NPS

A N-parton scattering (NPS) cross-section (1708.07519)

$$\sigma_{f_1\cdots f_N}^{\text{NPS}} = \frac{m}{N!} \frac{\prod_{i=1}^N \sigma_{f_i}^{\text{SPS}}}{(\sigma_{\text{eff},N})^{N-1}},$$

(2)

- 2 The factor $\frac{m}{N!}$: the indistinguishable final state symmetry.
- Section of producing final state f_i .
- $\sigma_{\rm eff,N}$: the effective cross section, which should be determined by experiments.
- Solution The DPS and TPS cases correspond to N = 2 and N = 3.
- Solution Ref. 1612.05582 derives $\sigma_{\text{eff},3} = (0.82 \pm 0.11) \times \sigma_{\text{eff},2}$.

$\sigma_{\rm eff,2}$ and heavy quarkonium (1710.06315, 1811.07474)

$\sigma_{\rm eff,2}$

- $\sigma_{\rm eff,2} \sim 10$ mb: extracted from the quarkonium data.
- \circ $\sigma_{\rm eff,2}$ ~15 mb: extracted from the weak gauge boson data.
- However, it is still far from being conclusive in view of the remaining large uncertainties.

Introduction

The frame of Calculation

 $J/\psi + J/\psi + J/\psi + J/\psi + J/\psi$

Summary

Multiparton scattering

DPS and W, Z

Introduction

The frame of Calculation

$J/\psi + J/\psi + J/\psi + J/\psi$

Summary

Multiparton scattering

dphi @ D0, Shao, Zhang, 1605.03061

Double parton scattering Picture (Enterria, Snigirev, 1708.07519)

DPS

$$P_{pp \to ab}^{DPS} = P_{pp \to a}^{SPS} \times P_{pp \to b}^{SPS}$$
$$= \frac{\sigma(pp \to a + X)}{\sigma^{inel}(pp)} \times \frac{\sigma(pp \to b + X)}{\sigma^{inel}(pp)}$$
(3)

Then $\sigma_{eff}^{nPS} \sim \sigma^{inel}(pp)$. But $\sigma^{inel}(pp) \sim 30 - 50$ mb and $\sigma_{eff}^{nPS} \sim 10 - 15$ mb.

Introduction	
000000000000000000000000000000000000000	5

TPS

TPS (1612.05582, 1703.07163, 1710.1152)

TPS theoretical studies in literature are limited to open heavy-flavor productions so far. The complete study including SPS and DPS is not available.

Figure: TPS of $pP_b \rightarrow c\bar{c} + c\bar{c} + c\bar{c}$ (PRL118, 122001).

 $J/\psi + J/\psi + J/\psi + J/\psi + J/\psi$

Quarkonium productions

Quarkonium productions

NLO J/ψ at LHCb, Chao/Wang/Kniehl, 1506.03981

Quarkonium productions

CO LDMEs, 1212.2037

	Butenschoen,	Gong, Wang,	Chao, Ma,	Shao, Wang, Z	⁵²
	Kniehl ¹⁸	Wan, Zhang ⁵³	default set	set 2	set 3
$\langle \mathcal{O}^{J/\psi}({}^3S_1^{[1]})\rangle$	$1.32 \ {\rm GeV^3}$	1.16 GeV^3	$1.16 \ { m GeV}^3$	$1.16 \ { m GeV^3}$	$1.16 \ { m GeV^3}$
$\langle \mathcal{O}^{J/\psi}({}^1S_0^{[8]})\rangle$	$0.0497 \ \mathrm{GeV}^3$	$0.097 \ \mathrm{GeV}^3$	0.089 GeV^3	0	$0.11 \ { m GeV}^3$
$\langle \mathcal{O}^{J/\psi}({}^3S_1^{[8]})\rangle$	$0.0022 \ \mathrm{GeV^3}$	$-0.0046~{\rm GeV^3}$	$0.0030 \ \mathrm{GeV^3}$	$0.014~{ m GeV^3}$	0
$\langle \mathcal{O}^{J/\psi}({}^3P_0^{[8]})\rangle$	$-0.0161~{\rm GeV^5}$	$-0.0214~{\rm GeV}^5$	$0.0126~{\rm GeV}^5$	$0.054~{\rm GeV^5}$	0
$\langle \mathcal{O}^{\psi'}({}^3S_1^{[1]})\rangle$		$0.758 \ { m GeV}^3$			
$(O^{\psi'}({}^{1}S_{0}^{[8]}))$		$-0.0001~{\rm GeV}^3$			
$\langle \mathcal{O}^{\psi'}({}^3S_1^{[8]})\rangle$		$0.0034 \ \mathrm{GeV^3}$			
$\langle \mathcal{O}^{\psi'}({}^{3}P_{0}^{[8]})\rangle$		$0.0095~{\rm GeV^5}$			
$\langle \mathcal{O}^{\chi_0}({}^3P_0^{[1]})\rangle$		$0.107 \ \mathrm{GeV^5}$			
$\langle \mathcal{O}^{\chi_0}({}^3S_1^{[8]})\rangle$		$0.0022~{\rm GeV}^3$			

Double J/ψ , Lansberg, Shao, 1410.8822

	Energy and quarkonium cuts	$\sigma_{\rm exp.}$	$\sigma_{\rm LO}^{\rm SPS, prompt}$	$\sigma_{\rm NLO^{(\star)}}^{\rm SPS, prompt}$	$\sigma^{\mathrm{DPS, prompt}}$	χ^2
LHCb	$\sqrt{s} = 7$ TeV, $P_T^{\psi_{1,2}} < 10$ GeV, $2 < y_{\psi} < 5$ [34]	18 ± 5.3 pb	$41^{+51}_{-24}\ pb$	46 ⁺⁵⁸ ₋₂₇	$31^{+11}_{-6.3}(^{+24}_{-15})\ pb$	0.5 - 1.2
D0	$\sqrt{s} = 1.96 \text{ TeV}, P_T^{\psi_{1,2}} > 4 \text{ GeV},$	SPS: 70 ± 23 fb	$53^{+57}_{-27} \ fb$	$170^{+340}_{-110}~{\rm fb}$	-	-
DO	$ \eta_{\psi} < 2.0$ [12] (+ μ cuts in caption)	DPS: 59 ± 23 fb	-	-	$44^{+16}_{-9.1}(^{+7.5}_{-5.1})~{\rm fb}$	0.06 - 0.5
CMS	$\sqrt{s} = 7$ TeV, $P_T^{\psi_{1,2}} > 6.5 \rightarrow 4.5$ GeV depending on $ y_{\psi_{1,2}} \in [0, 2.2]$ (see the caption) [35]	5.25 ± 0.52 pb	$0.35^{+0.26}_{-0.17} \ pb$	$1.5^{+2.2}_{-0.87} \ pb$	$0.69^{+0.24}_{-0.14}(^{+0.039}_{-0.027}) \ pb$	1.09 - 1.14
ATLAS	$\sqrt{s} = 7 \text{ TeV}, P_T^{\psi_{1,2}} > 5 \text{ GeV and } y_{\psi_{1,2}} < 2.1 (+ \mu \text{ cuts in the caption}) [48]$	-	$6.4^{+4.3}_{-2.6} \; fb$	$36^{+49}_{-20} \ fb$	$19^{+6.8}_{-4.0}(^{+2.2}_{-1.6})~{\rm fb}$	N/A

Introduction

The frame of Calculation

 $J/\psi + J/\psi + J/\psi + \lambda$

Summary

Quarkonium productions

Double J/ψ at CMS, Sun, Han, Chao, 1404.4042

Introduction

The frame of Calculation

 $J/\psi + J/\psi + J/\psi + J/\psi$

Summary

Quarkonium productions

Double J/ψ at CMS, Lansberg, Shao, Yamanaka, YJZ 1906.10049

Quarkonium production and double parton scattering

1
$$J/\psi + W$$
 and $J/\psi + Z$, (ATLAS, arXiv:1401.2831, 1412.6428)

Quarkonium production and double parton scattering

- $J/\psi + W$ and $J/\psi + Z$, (ATLAS, arXiv:1401.2831, 1412.6428)
- **2** $J/\psi + charm$ and $\Upsilon + charm$ (LHCb, arXiv:1205.0975, 1510.05949)

Quarkonium production and double parton scattering

- $J/\psi + W$ and $J/\psi + Z$, (ATLAS, arXiv:1401.2831, 1412.6428)
- J/ψ + charm and Υ + charm (LHCb, arXiv:1205.0975, 1510.05949)
- **3** $J/\psi + J/\psi$ (D0, arXiv:1406.2380; CMS, arXiv:1406.0484)

Quarkonium production and double parton scattering

- $J/\psi + W$ and $J/\psi + Z$, (ATLAS, arXiv:1401.2831, 1412.6428)
- J/ψ + charm and Υ + charm (LHCb, arXiv:1205.0975, 1510.05949)
- **3** $J/\psi + J/\psi$ (D0, arXiv:1406.2380; CMS, arXiv:1406.0484)
- **3** $\Upsilon + J/\psi$ (D0, arXiv:1511.02428)

Introduction

The frame of Calculation

 $J/\psi + J/\psi + J/\psi + J/\psi + J/\psi$

Summary

Quarkonium productions

Quarkonium associated production

Quarkonium associated production at hadron colliders

• $\sigma(J/\psi + c\bar{c})@\alpha_s^4$: Artoisenet, Lansberg, Maltoni, 0703129.

The frame of Calculation

 $J/\psi + J/\psi + J/\psi + J/\psi + J/\psi$

Summary

Quarkonium productions

Quarkonium associated production

Quarkonium associated production at hadron colliders

- $\sigma(J/\psi + c\bar{c})@\alpha_s^4$: Artoisenet, Lansberg, Maltoni, 0703129.
- $\sigma(\Upsilon + 3jets)@\alpha_s^5$: Artoisenet, Campbell, Lansberg, Maltoni, Tramontano, 0806.3282.

The frame of Calculation

 $J/\psi + J/\psi + J/\psi + J/\psi + J/\psi$

Summary

Quarkonium productions

Quarkonium associated production

Quarkonium associated production at hadron colliders

- $\sigma(J/\psi + c\bar{c})@\alpha_s^4$: Artoisenet, Lansberg, Maltoni, 0703129.
- $\sigma(\Upsilon + 3jets)@\alpha_s^5$: Artoisenet, Campbell, Lansberg, Maltoni, Tramontano, 0806.3282.
- **3** $\sigma(B_{ccc} + \bar{c} + \bar{c} + \bar{c}) @ \alpha_s^6$: Chen, Wu, 1106.0193.

 $J/\psi + J/\psi + J/\psi + J/\psi$

Quarkonium productions

Quarkonium associated production

Quarkonium associated production at hadron colliders

- $\sigma(J/\psi + c\bar{c})@\alpha_s^4$: Artoisenet, Lansberg, Maltoni, 0703129.
- 2 $\sigma(\Upsilon + 3jets)@\alpha_s^5$: Artoisenet, Campbell, Lansberg, Maltoni, Tramontano, 0806.3282.
- **3** $\sigma(B_{ccc} + \bar{c} + \bar{c} + \bar{c}) @ \alpha_s^6$: Chen, Wu, 1106.0193.
- $\sigma(J/\psi + J/\psi + J/\psi + g)@\alpha_s^7$: Shao, YJZ, 1902.04949....

The frame of Calculation

Total triple J/ψ hadroproduction cross sections

DPS and TPS cross sections

We will use the following concrete formula:

$$= \frac{\sigma^{\text{DPS}}(pp \to J/\psi J/\psi J/\psi + X)}{\sigma^{\text{SPS}}(pp \to J/\psi J/\psi + X)\sigma^{\text{SPS}}(pp \to J/\psi + X)},$$

$$\sigma^{\text{TPS}}(pp \to J/\psi J/\psi J/\psi + X)$$

$$= \frac{1}{6} \frac{\left[\sigma^{\text{SPS}}(pp \to J/\psi + X)\right]^{3}}{(\sigma_{\text{eff},3})^{2}}$$
(4)

to calculate DPS and TPS cross sections.

n total, there are three different SPS cross sections, i.e., those

 $J/\psi + J/\psi + J/\psi + \lambda$

SPS cross sections

Hadron and Parton level cross sections

$$\sigma(h_1 h_2 \to \mathcal{J}\mathcal{J}\mathcal{J}) = \sum_{a,b} f_{a/h_1} \otimes f_{b/h_2}$$
$$\otimes \hat{\sigma}(ab \to \mathcal{C} + \mathcal{J} + \mathcal{J} + X).$$
(5)

Parton level cross section

$$d\hat{\sigma}(ab \rightarrow \mathcal{J}\mathcal{J}\mathcal{J}) = \sum_{\substack{n_1, n_2, n_2}} \hat{\sigma}(ab \rightarrow c\bar{c}[n_1]c\bar{c}[n_2]c\bar{c}[n_3] + X)$$
$$\langle O^{\mathcal{J}}(n_1) \rangle \langle O^{\mathcal{J}}(n_2) \rangle \langle O^{\mathcal{J}}(n_3) \rangle$$
(6)

One of 28774 Feynman Diagrams of SPS

Summary

Feynman Diagrams of DPS

Feynman Diagrams of TPS

Numerical Result of $J/\psi J/\psi J/\psi + X$

SPS cross sections with $p_T(J/\psi) > 2$ GeV

σ^{SPS}	Order	$14 { m TeV}$	$100 { m TeV}$
$J/\psi + X$	α_s^3	$72 \pm 1 \ \mu b$	$300 \pm 8 \ \mu b$
$J/\psi J/\psi + X$	α_s^4	$67\pm2~\mathrm{nb}$	$343\pm13~\mathrm{nb}$
$J/\psi J/\psi J/\psi + X$	α_s^7	$1\pm0.6~\rm{pb}$	$4.2\pm3.2~\rm{pb}$

$\sigma(J/\psi J/\psi J/\psi + X)$	Order	$14 { m TeV}$	$\mathrm{CMS} @ 14 ~\mathrm{TeV}$	$100 { m TeV}$
TPS	α_s^9	$620\pm20~\rm{pb}$	$45 \pm 1.5 \text{ pb}$	$45000 \pm 1500 ~\rm pb$
DPS	α_s^7	$480\pm20~\rm{pb}$	35 ± 1.5 nb	$10000\pm1000~\rm{pb}$
SPS	$\alpha_s^{\tilde{7}}$	$1\pm0.6~{\rm pb}$	$0.07\pm0.04~\rm{pb}$	$4.2 \pm 3.2 \text{ pb}$

Triple J/ψ production at 100 TeV SPPC

Triple J/ψ production at 100 TeV SPPC

Triple J/ψ production at 75 TeV SPPC

Triple J/ψ production at 75 TeV SPPC

Introduction

The frame of Calculation

 $J/\psi + J/\psi + J/\psi + X$

Summary

$J/\psi J/\psi J/\psi + X$ at CMS/Atlas

Search TPS at CMS/Atlas

Ignore the difference between $\sqrt{s} = 14$ TeV and $\sqrt{s} = 13$ TeV.

$J/\psi J/\psi J/\psi + X$ at CMS/Atlas

Search TPS at CMS/Atlas

- Ignore the difference between $\sqrt{s} = 14$ TeV and $\sqrt{s} = 13$ TeV.
- 2 Integrated luminosity of CMS/Atlas is about 160 fb⁻¹ at $\sqrt{s} = 13$ TeV.

$J/\psi J/\psi J/\psi + X$ at CMS/Atlas

Search TPS at CMS/Atlas

Ignore the difference between $\sqrt{s} = 14$ TeV and $\sqrt{s} = 13$ TeV.

0.059.

2 Integrated luminosity of CMS/Atlas is about 160 fb⁻¹ at $\sqrt{s} = 13$ TeV.

3
$$Br[J/\psi \rightarrow \mu^+\mu^-] =$$

$J/\psi J/\psi J/\psi + X$ at CMS/Atlas

Search TPS at CMS/Atlas

- Ignore the difference between $\sqrt{s} = 14$ TeV and $\sqrt{s} = 13$ TeV.
- Integrated luminosity of CMS/Atlas is about 160 fb⁻¹ at $\sqrt{s} = 13$ TeV.

3
$$Br[J/\psi \to \mu^+\mu^-] = 0.059.$$

Number of events for $3J/\psi(\mu^+\mu^-)$ with $p_T(J/\psi) > 2 \text{ GeV}$ is about 2700 ± 72 , which is 1500 ± 50 from TPS and 1200 ± 50 from DPS.

$J/\psi J/\psi J/\psi + X$ at CMS/Atlas

Search TPS at CMS/Atlas

- Ignore the difference between $\sqrt{s} = 14$ TeV and $\sqrt{s} = 13$ TeV.
- 2 Integrated luminosity of CMS/Atlas is about 160 fb⁻¹ at $\sqrt{s} = 13$ TeV.

3
$$Br[J/\psi \to \mu^+\mu^-] = 0.059.$$

- Number of events for $3J/\psi(\mu^+\mu^-)$ with $p_T(J/\psi) > 2 \text{ GeV}$ is about 2700 ± 72 , which is 1500 ± 50 from TPS and 1200 ± 50 from DPS.
- We can introduce cut to distinguish SPS, DPS, and TPS contributions.

Triple J/ψ production at LHC

Summary

Triple J/ψ production at LHC

Summary

Triple J/ψ production at LHC

Introduction 000000000000000	The frame of Calculation	Summary
Summary		

We have performed the first analysis of simultaneous production of triple J/ψ from SPS/DPS/TPS contributions at SPPC.

Our work shows that it is in fact most probably dominated by TPS and DPS contributions.

Finally, we show that triple J/ψ production at LHC may be studied by experimenters.

The inclusive cross section to produce *n* hard particles in hadronic colliders is a convolution of generalized *n*-parton distribution functions (PDF) and elementary partonic cross sections summed over all involved partons,

$$\sigma_{hh' \to a_{1}...a_{n}}^{\text{NPS}} = \left(\frac{m}{n!}\right) \sum_{i_{1},..,i_{n},i'_{1},..,i'_{n}} \int \Gamma_{h}^{i_{1}...i_{n}}(x_{1},..,x_{n};\mathbf{b}_{1},..,\mathbf{b}_{n};Q_{1}^{2},..,Q_{n}^{2}) \\
\times \hat{\sigma}_{a_{1}}^{i_{1}i'_{1}}(x_{1},x'_{1},Q_{1}^{2}) \cdots \hat{\sigma}_{a_{n}}^{i_{n}i'_{n}}(x_{n},x'_{n},Q_{n}^{2}) \\
\times \Gamma_{h'}^{i'_{1}...i'_{n}}(x'_{1},...,x'_{n};\mathbf{b}_{1}-\mathbf{b},...,\mathbf{b}_{n}-\mathbf{b};Q_{1}^{2},...,Q_{n}^{2}) \\
\times dx_{1}...dx_{n} dx'_{1},...,dx'_{n} d^{2}b_{1},...,d^{2}b_{n} d^{2}b.$$
(7)

The *n*-parton distribution function (1708.07519)

It encodes all the 3D structure information of the hadron.

 Assumption 1: the n-PDF are factored in terms of longitudinal and transverse components,

$$\Gamma_{h}^{i_{1}...i_{n}} = D_{h}^{i_{1}...i_{n}}(x_{1},...,x_{n};Q_{1}^{2},...,Q_{n}^{2})f(\mathbf{b_{1}})...f(\mathbf{b_{n}})$$
(8)

- We can get hadron-hadron overlap function $T(\mathbf{b}) = \int f(\mathbf{b_1}) f(\mathbf{b_1} \mathbf{b}) d^2 b_1$, where $1 = \int T(\mathbf{b}) d^2 b$.
- Assumption 2: the longitudinal components reduce to the product of independent single PDF

$$D_{h}^{i_{1}...i_{n}}(x_{1},...,x_{n};Q_{1}^{2},...,Q_{n}^{2}) = D_{h}^{i_{1}}(x_{1};Q_{1}^{2})\cdots D_{h}^{i_{n}}(x_{n};Q_{n}^{2})$$
(9)

The cross sections and σ_{eff}^{nPS} (Enterria, Snigirev, 1708.07519)

The cross sections of *n*-particle associated production

Then we can get

$$\sigma_{hh' \to a_1 \dots a_n}^{nPS} = \left(\frac{m}{n!}\right) \frac{\sigma_{hh' \to a_1}^{SPS} \cdots \sigma_{hh' \to a_n}^{SPS}}{\left(\sigma_{eff}^{nPS}\right)^{n-1}},$$
 (10)

 $\sigma_{\it eff}^{\it nPS}$

$$\left(\frac{1}{\sigma_{\text{eff}}^{n\text{PS}}}\right)^{n-1} = \int d^2 b \, T^n(\mathbf{b}) \tag{11}$$