

Higgs boson decay into four bottom quarks in the SM and beyond

Jun Gao

Institute of Nuclear and Particle Physics, Shanghai Jiao Tong University

1905.04865, JG

CEPC workshop, Peking University July 2, 2019

SHANGHAI JIAO TONG UNIVERSITY
Department of Physics

Post Higgs boson Era

 Study on properties of the Higgs boson including looking for further extensions has been one of the high priority in the next few decades

☆ Higgs boson introduces new phenomenas for study of elementary particles, spin-0 particle, scalar self interactions, Yukawa interactions

Decays of the Higgs boson

 Higgs boson with a mass of 125 GeV decays dominantly to bottom quark pair via Yukawa y_b~0.01 resulting in small width Γ/m~3×10⁻⁵

3

Hadronic decays of the Higgs boson

 Higgs boson event of hadronic decays can be selected based on the recoil mass and be fully reconstructed

SM event numbers assuming 250 GeV, 5 ab⁻¹ and Z to electrons and muons

$Z(l^+l^-)H(X)$	gg	$b\overline{b}$	$c\overline{c}$	$WW^*(4h)$	$ZZ^*(4h)$	$q \overline{q}$
BR [%]	8.6	57.7	2.9	9.5	1.3	~ 0.02
Nevent	6140	41170	2070	6780	930	14

 full kinematic information allowing measurement of event shapes in Higgs rest frame

[An + for CEPC, 2018]

Higgs measurements at CEPC

 CEPC Higgs factory can provide percent-level precision with modelindependent measurement of various Higgs couplings

		Estimated Precision						
	Property	CEF	PC-v1		CEPC-v4			
	m_H	5.9	MeV		5.9~1	MeV		
	Γ_H	2.	^{7%} 250	GeV 56 ab	-1 2.8	^{3%} 240	Ge\	
	$\sigma(ZH)$	0.	5%		0.5	5%		
	$\sigma(u ar{ u} H)$	3.0%			3.2%			
	Decay mode	$\sigma\!\times\!\mathrm{BR}$	BR	σ >	×BR	BR		
Γ	$H \rightarrow b\overline{b}$	0.26%	0.56%	0.	27%	0.56%		
	$H \rightarrow c \bar{c}$	3.1%	3.1%	3	.3%	3.3%		
L	$H \rightarrow gg$	1.2%	1.3%	1	.3%	1.4%		
	$H\!\rightarrow\!WW^*$	0.9%	1.1%	1	.0%	1.1%		
	$H\!\rightarrow\! ZZ^*$	4.9%	5.0%	5	.1%	5.1%		
	$H \mathop{\rightarrow} \gamma \gamma$	6.2%	6.2%	6	.8%	6.9%		
	$H \mathop{\rightarrow} Z\gamma$	13%	13%	1	6%	16%		
	$H\!\rightarrow\!\tau^+\tau^-$	0.8%	0.9%	0	.8%	1.0%		
	$H{\rightarrow}\mu^+\mu^-$	16%	16%	1	7%	17%		
	$\mathrm{BR}^{\mathrm{BSM}}_{\mathrm{inv}}$	_	$<\!0.28\%$		_	< 0.30%		

[An + for CEPC, 2018]

different hadronic channels can be separated through jet identifications,
 e.g., heavy-flavor tagging, quark-gluon jet discrimination

Total hadronic decay width

 High precision theoretical predictions exist, full results known at O(as^4); even higher order results exist for individual channels

Higgs effective theory

$$\mathcal{L}_{\text{eff}} = -\frac{H^{0}}{v^{0}} \left(C_{1}[\mathcal{O}_{1}'] + C_{2}[\mathcal{O}_{2}'] \right) + \mathcal{L}_{\text{QCD}}' \qquad \mathcal{O}_{1}' = \left(G_{a,\mu\nu}^{0\prime} \right)^{2}, \quad \mathcal{O}_{2}' = m_{b}^{0\prime} \overline{b}^{0\prime} b^{0\prime}$$

 $\Gamma(H \to \text{hadrons}) = A_{b\bar{b}} \left[(C_2)^2 (1 + \Delta_{22}) + C_1 C_2 \Delta_{12} \right] + A_{gg} (C_1)^2 \Delta_{11}$

Exclusive hadronic decays

◆ Measuring Yukawa couplings of light-quarks at LHC are particularly challenging due to their smallness, y_s/y_b~2%, and huge QCD Bks

exotic decays (BR~10⁻⁶)

[Kagan +, 2014, 2016]

 low sensitivity due to huge hadronic backgrounds

Higgs kinematics

☆ LHC/HL-LHC can probe Yukawa of u/d quarks to ~0.3y_b

Exclusive hadronic decays

 Using hadronic event shapes to look for light-quark decay modes and Yukawa couplings; projected sensitivity for 250 GeV run with 5 ab⁻¹

expected exclusion limit

[JG, 1608.01746]

from various event shapes

Improving theoretical prediction

 Works are in progress on improving theoretical predictions on event shapes in Higgs decay, NLO and beyond [JG, Gong, Ju, Yang, 2019]

the inclusive decay

thrust distribution

energy-energy correlations

 $\frac{1}{\Gamma_{\text{tot}}} \frac{d\Sigma_H(\chi)}{d\cos\chi} = \sum_{a,b} \int \frac{2E_a E_b}{m_H^2} \,\delta(\cos\theta_{ab} - \cos\chi) \,d\Gamma_{a+b+X}$

[Luo, Shtabovenko, Yang, Zhu, 2019]

 NLO predictions in a compact analytic form, only di-gluon channel yet

Improving theoretical prediction

 Exact NNLO QCD corrections have been recently carried out for Higgs decaying into three-jet for the (massless) bottom quark channel

 phase space slicing method is now widely used for NNLO calculations in QCD

[Catani, Grazzini, 2007]

[JG, Li, Zhu, 2012]

[Boughezal, Focke, Liu, Petriello, 2015]

 scale variations largely reduced at NNLO

Improving theoretical prediction

 Dependence of the event shape distributions on hadronization effects via either MC or analytic models

[Mo, Tackmann, Waalewijn, 2017]

thrust distribution (hadron level)

☆ Non-perturbative corrections are not well understood in general for case of quark-gluon jet discrimination

Higgs boson to four boson to $f_{H(k_1)}^{b(k_3)}$ boson to $f_{H(k_1)}^{b(k_1)}$ boson to $f_{H(k_1)}^{b(k_1)}$ boson to $f_{H(k_1)}^{b(k_1)}$ boson to $\overline{H}(k_1)\overline{b}(k_5)$

• A complete next-to-leading $\bar{b}_{\bar{k}}^{(k_5)}$ der $\bar{b}_{\bar{k}}^{(k_2)}$ lculation $\bar{b}_{\bar{k}}^{(k_5)}$ cluding both $Y\bar{b}_{\bar{k}}^{(k_5)}$ wa and EW couplings with $f_{k_2}^{b(k_3)}$ and EW couplings with $f_{k_2}^{b(k_3)}$ and $f_{k_2}^{H_1}$ and $f_{k_2}^{H_1}$ and $f_{k_2}^{H_2}$ and

$$A_{b\bar{b}} = \frac{3M_H}{8\pi v^2} \overline{m}_b^2(\mu), \qquad A_{gg} = \frac{4M_H^3}{2\pi v^2}, \qquad x = m_b^2/M_H^2,$$

 $b(k_3)$

 $b(k_4)$

 $(b(k_4))$

$$\begin{split} \delta_{b\bar{b}}(x) &= \frac{\alpha_S(\mu)}{2\pi} \left[(2\beta_0 + 3C_F) \ln(4\mu^2/M_H^2) + a_{b\bar{b}}(x) \right], \\ \delta_{bg}(x) &= \frac{\alpha_S(\mu)}{2\pi} \left[(3\beta_0 + 3C_F) \ln(4\mu^2/M_H^2) + a_{bg}(x) \right], \\ \delta_{gg}(x) &= \frac{\alpha_S(\mu)}{2\pi} \left[(4\beta_0) \ln(4\mu^2/M_H^2) + a_{gg}(x) \right]. \end{split}$$

1

mixing of operator O₁ and O₂ \mathbf{x}

Higgs boson to four bottom quarks in SM

 A complete next-to-leading order calculation including both Yukawa and EW couplings with¹full bottom quark mass dependences

exotic decay in the SM

[JG, 1905.04865]

EW $\Gamma_{4b,ew} = A_{ZZ} \Delta_{ZZ}(x) (1 + \delta_{ZZ}(x)), \quad A_{ZZ} = \frac{32M_Z^4 M_H}{\pi^3 v^4}, \qquad \delta_{ZZ} = \frac{\alpha_S(\mu)}{2\pi} [a_{ZZ}(x)].$

complex mass scheme
 [Denner, Dittmaier+, 2005]

 NLO QCD correction for massless quarks from PROPHECY4F [Denner, Dittmaier+, 2006]

Higgs boson to four bottom quarks in SM

 A complete next-to-leading order calculation including both Yukawa and EW couplings with full bottom quark mass dependences

$m_b \; (\text{GeV})$	$x(10^{-3})$	$\Delta_{b\bar{b}}$	Δ_{bg}	Δ_{gg}	$a_{b\bar{b}}$	a_{bg}	a_{gg}	Δ_{ZZ}	a_{ZZ}
4.2	1.129	7.32	-144.0	1.160	45.2	56.9	57.8	0.1222	5.64
4.4	1.239	6.80	-133.3	1.094	45.2	56.0	56.7	0.1205	5.80
4.6	1.354	6.32	-123.4	1.032	45.1	55.2	55.7	0.1188	5.97
4.8	1.474	5.89	-114.7	0.976	45.0	54.5	54.8	0.1170	6.14
5.0	1.600	5.49	-106.7	0.922	44.9	53.8	53.9	0.1152	6.32
5.2	1.730	5.13	-99.4	0.873	44.9	53.2	53.2	0.1133	6.50

☆ Bottom mass (pole) dependence, at LO and for the NLO QCD corrections

 ☆ SM predictions on BRs(H→4b) at ~0.3% with large QCD corrections; and dominated by Yukawa interactions

Higgs boson to four bottom quarks in SM

 A complete next-to-leading order calculation including both Yukawa and EW couplings with full bottom quark mass dependences

QCD scale variations

☆ QCD scale dependence is reduced though still significant for decay via Yukawa interactions,~25%

Jet cross sections

 ◆ Jet cross sections by requiring at least four b-tagged jets in the final state with e+e- k_T algorithm

☆ partial width as a function of the jet resolution parameter y; y=0.02 corresponds to an opening angle of about 0.3(17 degrees)

 Four b-jets are ordered by energy; kinematic distributions are constructed for individual jet and jet pairs

energy of the leading b-jet

☆ spectrum are harder and broader for decay via Yukawa couplings; QCD corrections change the shapes in different ways

 Four b-jets are ordered by energy; kinematic distributions are constructed for individual jet and jet pairs

energy of the softest b-jet

☆ softest b-jet peaked at E~15 GeV and are broader for decay via Yukawa couplings; QCD corrections show less dependence on energy

 Four b-jets are ordered by energy; kinematic distributions are constructed for individual jet and jet pairs

highest b-jet pair invariant mass

☆ clear Z mass peak in decay via EW coupling, while much broader for decay via Yukawa couplings; QCD corrections are quite different in two cases

 Four b-jets are ordered by energy; kinematic distributions are constructed for individual jet and jet pairs

inclusive b-jet pair invariant mass

 ✓ Z mass peak is diluted for decay via EW coupling and another peak arises for M~0.2M_H; QCD corrections are almost flat except close to Z mass region

 Four b-jets are ordered by energy; kinematic distributions are constructed for individual jet and jet pairs

inclusive b-jet pair energy

Symmetric at LO, asymmetries driven by unclustered gluon in QCD real radiations; triple peak structure expected for decay via EW couplings

SM vs BSM to four bottom quarks

 A comparison of the four bottom quark decay mode in SM and induced by two light scalars for normalized distributions

inclusive b-jet pair mass

☆ all calculated at NLO in QCD and assuming narrow width case for the light scalars; Gaussian smearing are applied with different energy resolutions

Summary

- Precision test of the Higgs couplings will be one of the most imperative task in the next few decades
- Better understanding on hadronic decays of the Higgs boson, on both perturbative and non-perturbative QCD aspects, will be important for extraction of the relevant Higgs couplings
- Rare or exotic hadronic decay modes can also be explored at future Higgs factory, for instance, decay to light quarks or to multiple heavy-quarks

Summary

- Precision test of the Higgs couplings will be one of the most imperative task in the next few decades
- Better understanding on hadronic decays of the Higgs boson, on both perturbative and non-perturbative QCD aspects, will be important for extraction of the relevant Higgs couplings
- Rare or exotic hadronic decay modes can also be explored at future Higgs factory, for instance, decay to light quarks or to multiple heavy-quarks

Thank you for your attention!