Introduction, orientation of the workshop

Hai-Bo Ll Institute of High Energy Physics July 7th-8th , Fudan University, Shanghai

Roadmap of CPV

- In 1964, the first CPV was discovered in Kaon;
- In 2001, CPV in B was established by two B-factories;
- In 2019, CPV was discovered in D meson: 10⁻⁴, 10⁸ reconstructed D mesons.
- All are consistent with CKM theory in the Standard model
- But no evidence was found in baryon system?

Why Hyperon physics at BESIII?

10 billion J/psi events collected

- Large BRs in J/psi decays
- Quantum correlated pair productions
- Easy to reconstruct
- Background free

Decay mode	$\mathcal{B}(imes 10^{-3})$	$N_B ~(\times 10^6)$
$J/\psi ightarrow \Lambda \bar{\Lambda}$	1.61 ± 0.15	16.1 ± 1.5
$J/\psi \rightarrow \Sigma^0 \bar{\Sigma}^0$	1.29 ± 0.09	12.9 ± 0.9
$J/\psi \rightarrow \Sigma^+ \bar{\Sigma}^-$	1.50 ± 0.24	15.0 ± 2.4
$J/\psi \rightarrow \Sigma(1385)^- \bar{\Sigma}^+$ (or c.c.)	0.31 ± 0.05	3.1 ± 0.5
$J/\psi \rightarrow \varSigma(1385)^- \bar{\varSigma}(1385)^+$ (or c.c.)	1.10 ± 0.12	11.0 ± 1.2
$J/\psi ightarrow \Xi^0 ar{\Xi}^0$	1.20 ± 0.24	12.0 ± 2.4
$J/\psi \rightarrow \Xi^- \bar{\Xi}^+$	0.86 ± 0.11	8.6 ± 1.0
$J/\psi \rightarrow \Xi (1530)^0 \bar{\Xi}^0$	0.32 ± 0.14	3.2 ± 1.4
$J/\psi \rightarrow \Xi (1530)^- \bar{\Xi}^+$	0.59 ± 0.15	5.9 ± 1.5
$\psi(2S) \rightarrow \Omega^- \bar{\Omega}^+$	0.05 ± 0.01	0.15 ± 0.03

2019年7月4日

Advantage at e+e- machine

Double tag

Both hyperons can be reconstructed and large control sample, and systematic uncertainties are under control.

Example: $e^+e^- \rightarrow J/\psi \rightarrow \Lambda \overline{\Lambda}$

Transverse polarization was observed which perpendicular to the production plane, the polarizations for hyperon and anti-hyperon are equal and same direction, and modified by the production angle θ_{Λ}

∆= complex phase between A_{% %} and A_{% %} 李海波(高能所)

Results from 10% of J/psi data

Nature Physics May 2019 arXiv:1808.08917

10 billion J/ψ – prospects

Nature Physics May 2019 arXiv:1808.08917

	Parameters	This work	100亿J/ ψ 数据 – 预期结果
	α_{ψ}	$0.461 \pm 0.006 \ {\pm}0.007$	←1) 精度达到 0.002
	$\Delta \Phi$	$(42.4 \pm 0.6 \pm 0.5)^{\circ}$	← 精度达到: 0.2 度
	α_	$0.750 \pm 0.009 \pm 0.004$	← 2) 精度达到 0.003
	α_+	$-0.758 \pm 0.010 \pm 0.007$	
	$\bar{\alpha}_0$	$-0.692\pm 0.016\pm 0.006$	
	A_{CP}	$-0.006 \pm 0.012 \pm 0.007$	← 3) CP破坏的精度: 0.004
	$\bar{\alpha}_0/\alpha_+$	$0.913 \pm 0.028 \pm 0.012$	← 精度达到 0.01
$\frac{\alpha_{+}}{\overline{\alpha}_{0}} = \frac{1+\frac{1}{\sqrt{2}}}{1-\sqrt{2}}$	$\frac{\frac{1}{\sqrt{2}} \left(T_{\frac{3}{2}} / T_{\frac{1}{2}} \right)}{\sqrt{2} \left(T_{\frac{3}{2}} / T_{\frac{1}{2}} \right)} \approx 1 + \left(\frac{1}{\sqrt{2}} \right)$	$+\sqrt{2}\left(T_{\frac{3}{2}}/T_{\frac{1}{2}}\right) = 1 + \frac{3}{\sqrt{2}}\left(T_{\frac{3}{2}}/T_{\frac{1}{2}}\right)$	~7σ偏离1.0. 确立Δ I = ³ 2的贡献
$\frac{\alpha_{+}}{\overline{\alpha}_{0}} - 1 = 0$	$.087 \pm 0.030 = \frac{3}{\sqrt{2}} \left(T \right)$	$ \begin{array}{c} \begin{array}{c} \begin{array}{c} \end{array}_{\lambda_{2}} / T_{\lambda_{2}} \end{array} \end{array} \rightarrow \left(T_{\lambda_{2}} / T_{\lambda_{2}} \right) = 0.041 \pm 0.014 \\ \end{array} $	$\frac{ T_{\Delta I=3/2} }{ T_{\Delta I=1/2} } \sim \frac{1}{22}$
•+		于1910(同肥厚	17

2019年7

7

Rare and forbidden decays

Front. Phys. 12(5), 121301 (2017) DOI 10.1007/s11467-017-0691-9

Per	SPECTIVE			Decay mode	Current data	Sensitivity	/
				-	$\mathcal{B}(\times 10^{-6})$	B(90%C.I	L.) $(\times 10^{-6})$ Type
	Prospects	for rare and for decays at BE	rbidden hyperon SIII	$\begin{array}{l} \Lambda \rightarrow n e^+ e^- \\ \Sigma^+ \rightarrow p e^+ e^- \\ \Xi^0 \rightarrow \Lambda e^+ e^- \end{array}$	- < 7 7.6 ± 0.6	< 0.8 < 0.4 < 1.2	EM penguin
SM	â	Hai-Bo Li ^{1,2,†} of High Energy Physics, Bei idemy of Science wthen E mail: 1	jing 100049, China 5, Beijing 100049, China	$ \begin{aligned} \Xi^0 &\to \Sigma^0 e^+ e^- \\ \Xi^- &\to \Sigma^- e^+ e^- \\ \Omega^- &\to \Xi^- e^+ e^- \\ \Sigma^+ &\to p \mu^+ \mu^- \\ \Omega^- &\to \Xi^- u^+ u^- \end{aligned} $	$(0.09^{+0.09}_{-0.08})$	< 1.3 < 1.0 < 26.0 < 0.4 < 20.0	Type A
	γ ξ	ithor. E-mail: 'uno@inep.ac.cn 7, 2017; accepted May 8, 2017 Electron Spectrometer III (BESIII) is pro	al May 8, 2017 cometer III (BESIII) is proposed t	$\frac{\Lambda \to \Xi \ \mu^{+} \mu}{\Lambda \to n \nu \bar{\nu}}$	-	< 0.3 < 0.4	Weak penguin
_	s - X u, c, t	d pairs, which pro- About 10^{6} -10 h the proposed branching fract	ovide a pristine experimental envi ⁸ hyperons, i.e., Λ , Σ , Ξ , and Ω data samples at BESIII. Based (ions of the hyperon decays is in the 10°, rare	$ \begin{array}{l} \Sigma \Xi^{0} \rightarrow \Lambda \nu \bar{\nu} \\ \Sigma^{0} \Xi^{0} \rightarrow \Sigma^{0} \nu \bar{\nu} \\ \Sigma^{0} \Xi^{-} \rightarrow \Sigma^{-} \nu \bar{\nu} \\ \Sigma^{0} \Omega^{-} \rightarrow \Xi^{-} \nu \bar{\nu} \end{array} $	-	< 0.1 < 0.8 < 0.9 _* < 26.0	Type B
	$B_i \rightarrow B_f \gamma$	$B(\times 10^{-3})$	α_{γ}	$\Sigma^- \rightarrow \Sigma^+ e^- e^-$	-	< 1.0	
-	$\begin{array}{c} \Lambda \to n\gamma \\ \Sigma^+ \to p\gamma \\ \Sigma^0 \to n\gamma \end{array}$	1.75 ± 0.15 1.23 ± 0.05	-0.76 ± 0.08	$\begin{array}{l} \Sigma^- \rightarrow p e^- e^- \\ \Xi^- \rightarrow p e^- e^- \\ \Xi^- \rightarrow \Sigma^+ e^- e^- \\ \Omega^- \rightarrow \Sigma^+ e^- e^- \end{array}$	-	< 0.6 < 0.4 < 0.7 < 15.0	Neutrinoless double beta decays
	$\Xi^0 \rightarrow \Lambda \gamma$	1.17 ± 0.07	-0.70 ± 0.07	$\Sigma^- \to p\mu^-\mu^-$ $\Xi^- \to p\mu^-\mu^-$	- < 0.04	< 1.1 < 0.5	Туре С
	$\Xi^0 \rightarrow \Sigma^0 \gamma$ $\Xi^- \rightarrow \Sigma^- \gamma$	3.33 ± 0.10 0.127 ± 0.023	-0.69 ± 0.06 1.0 ± 1.3	$\begin{array}{l} \Omega & \to \Sigma^+ \mu^- \mu \\ \Sigma^- \to p e^- \mu^- \\ \Xi^- \to p e^- \mu^- \end{array}$	-	< 17.0 < 0.8 < 0.5	l_1 l_2
_	$\varOmega^-\to \Xi^-\gamma$	$< 0.46 \; (90\% {\rm ~C.L.})$	_	$\frac{\Xi \to \Sigma^+ e^- \mu^-}{\Omega^- \to \Sigma^+ e^- \mu^-}$	-	< 0.8 < 17.0	B_A β_B B_B

FCNC: radiative decays

Most of them never studied.

2019年7月4日

李海波(高能所)

Semileptonic decays: V_{us}

2019年7月4日

李海波(高能所)

 $\Xi^0 \rightarrow \Sigma^+ e^- \overline{\nu}$

Combined

0.876(71) 1.32(+.22/-.18)

 0.209 ± 0.027

 0.2250 ± 0.0027

Future J/psi factory

Width of J/ψ : 92 keV

BEPCII: uncertainty of E_{CM} 1.2 MeV \rightarrow observed cross-section J/ψ : 3400 nb;

With monochromator optics, uncertainty on E_{CM} : 100 keV

 \rightarrow observed cross-section of J/ψ : 41000 nb excited !

The same data taking time, a factor of 1000 increase than that at BEPCII

Future J/psi factory

$10^{13}J/\psi$ per year at super J/psi factory

Billion of hyperon pairs produced Billon of hyperon pairs reconstructed CPV: $10^{-4} - 10^{-5}$

Challenge SM

In the workshop

- Polarization in various hyperon productions: strong interaction, inner structure?
- Measurements of CPV: observables
- Understand the decays of hyperons: $\Delta I = \frac{1}{2}$ rule
- Rare hyperon decays
- Semileptonic decays: from factors, and Vus

Thank you !