

Baryon form factors at BESIII

Xiaorong Zhou (on behalf of BESIII Collaboration)

State Key Laboratory of Particle Detection and Electronics University of Science and Technology of China

Workshop on form factor, polarization and CP violation in quantum-correlated hyperon-antihyperon production Fudan University, 7.9th, 2019

Outline

- Introduction
- Baryon Form factors
 - Nucleon form factors
 - Hyperon form factors
- Summary and prospect

Composition of the Universe

Probe nucleon charge radius:

 $G_E(Q^2) = 1 - \frac{1}{6}r_E^2Q^2 + \cdots$

Nucleon is the dominant component of visible universe (>99%)

Proton Radius Confusion

3

Nucleon Electromagnetic Form Factor (NEFF)

- Elastic scattering of electron and proton (Hofstadter, Nobel Prize 1961)
 - Theoretically, differential cross section is:
 - $\left(\frac{\mathrm{d}\sigma}{\mathrm{d}\Omega}\right)_{\mathrm{ep}} = \left(\frac{\mathrm{d}\sigma}{\mathrm{d}\Omega}\right)_{\mathrm{Mott}} \left(1 + 2\tau \tan^2\frac{\theta}{2}\right) F(q^2)$

• The nucleon electromagnetic vertex Γ_{μ} describing the hadron current:

$$\Gamma_{\mu}(p',p) = \gamma_{\mu}F_{1}(q^{2}) + \frac{i\sigma_{\mu\nu}q^{\nu}}{2m_{p}}F_{2}(q^{2})$$

• Sachs FFs:

Electric FF:
$$G_E(q^2) = F_1(q^2) + \tau \kappa_p F_2(q^2)$$

Magnetic FF: $G_M(q^2) = F_1(q^2) + \kappa_p F_2(q^2)$

$$au = rac{q^2}{4m^2}, \qquad \kappa = rac{g-2}{2}, \qquad g = rac{\mu}{J}$$

Playground of EMFFs

■ In SL, FFs are real.

- Encode information about charge distribution of the nucleon
- **In TL**, FFs are complex, $|G_E/G_M|$ and $\Delta \Phi$.

Can be related to the time evolution of the EM charges within the nucleon

BESIII has access to the FFs in TL

Measurement techniques for baryon FF

	Energy Scan	Initial State Radiation
Ebeam	discrete	fixed
\mathcal{L}	low at each beam energy	high at one beam energy
σ	$\frac{d\sigma_{p\bar{p}}}{d(\cos\theta)} = \frac{\pi\alpha^2\beta C}{2q^2} [G_M ^2 (1 + \cos^2\theta)]$	$\frac{d^2\sigma_{p\overline{p}\gamma}}{dq^2d\theta_{\gamma}} = \frac{1}{s}W(s, x, \theta_{\gamma})\sigma_{p\overline{p}}(q^2)$
	$+\frac{4m_p^2}{q^2} G_E ^2\sin^2\theta]$	$W(s, x, \theta_{\gamma}) = \frac{\alpha}{\pi^{x}} \left(\frac{2-2x+x^{2}}{\sin^{2}\theta_{\gamma}} - \frac{x^{2}}{2} \right)$
q^2	single at each beam energy	from threshold to s
Both techniques, energy scan and initial state $\sim \frac{1}{400}$		

Both techniques, energy scan and initial state radiation. can be used at BESIII

Status on proton FFs

• Still mystery on proton cross section line-shape

- Point-like cross section near threshold,
- $\sigma_{\text{point}} = \frac{\pi \alpha^2}{3m^2 \tau} \left[1 + \frac{1}{2\tau}\right]$

 The e+e- → ppbar cross section shows an exponential growth in 1 MeV interval above threshold.

Status on proton FFs

• Inconsistence on $|G_E/G_M|$ of proton & poor precision

Phys. Rew. D 87, 092005 (2013)

- pQCD predictes a continuous transition and SL-TL equality at high Q²
- SL best accuracy in $Q^2(0.5, 8.5)$ GeV²: 1.7%
- TL accuracy before BESIII: exceeding 20%

Status on neutron FFs

• Poor precision, limited q² range in neutron FF

[2] J. G. Körner and m. Kuroda, Phys. Rev. D 16 (1988) 2165.

BESIII data samples

10

Proton FFs with ISR technique

• Combined seven data samples (7.4 fb⁻¹)

- Precision on $|G_{eff}|$: 4.1%-28.7%(untagged)
- Precision $|G_E/G_M|$ ratio: 23.0%-31.4%(untagged)
- Confirm Babar's result on $|G_E/G_M|$ above threshold

Phys. Rev. D99, 092002 (2019)

Proton FFs with scan technique

arxiv:1905.09001 (submit to PRL)

- Precise measurement of cross section $e^+e^- \rightarrow p\bar{p}$ at 22 points from 2.0 to 3.08 GeV, 688.5 pb⁻¹
- $|G_E/G_M|$, $|G_M|$ are determined with high accuracy, with uncertainty comparable to data in SL
- $|G_E|$ is measured for the first time

Proton FFs with scan technique

arxiv:1905.09001 (submit to PRL)

- Hypothesis on other results: $|G_E| = |G_M|$
- First line-shape of |G_M| without hypothesis, achieved by BESIII scan data.

Oscillation structures ?

- Oscillating structures observed in the EFF minus modified dipole parameterization in Babar.
 - Rescattering process in final state
 - Independent resonant structure

Neutron form factors at BESIII

- Analysis Challenges: Reconstruction of $e^+e^- \rightarrow n\bar{n}$
 - No MDC signal
 - Low EMC efficiency,
 - No TOF reconstruction

Neutron form factors at BESIII

Analysis Challenges: Insufficient MC simulation

Corrections need to be applied for MC efficiency:

►C_{data/MC}: correction due to data/MC difference

 $\succ C_{trg}$: trigger efficiency correction (in dependence of total deposition energy)

Neutron form factors at BESIII

Comparison with Space-Like Results

pQCD predicted asymptotic behavior of FFs

Figures from Prof. Vanderhaeghen

Status on hyperon FFs

Rare experimental results on Hyperon FF

Phys. Rev. D 76, 092006 (2007)

q²=14.2 GeV²

- diquark correlation evidence •
- favor spin-isospin singlet •

Relative phase of baryon

- Complex form of FFs:
 - $G_E = |G_E|e^{i\Phi_E}, G_M = |G_M|e^{i\Phi_M}$
 - Relative phase: $\Delta \Phi = \Phi_E \Phi_M$
- A non-zero phase has polarization effect on the Baryons:
 - $P_y \propto \sin \Delta \Phi$
- The angular distribution of daughter baryon from Hyperon weak decay is:
 - $\frac{d\sigma}{d\Omega} \propto 1 + \alpha_{\Lambda} \boldsymbol{P}_{\boldsymbol{y}} \cdot \boldsymbol{\widehat{q}}$
 - α_{Λ} : asymmetry parameter
 - \hat{q} : unit vector along the daughter baryon in hyperon rest frame

With hyperon weak decay to B+P, the polarization of hyperon can be measurement, so does the relative phase between G_{E} and G_{M} !

 e^+

Complete measurement of Λ EMFFs

arXIv: 1903.09421 (submit to PRL)

• An event of the reaction $e^+e^- \rightarrow \Lambda(\rightarrow p\pi^-)\overline{\Lambda}(\rightarrow \overline{p}\pi^+)$ is specified by the five dimensional vector $\xi = (\theta, \Omega_1, \Omega_2)$, the differential cross section is:

$$\begin{aligned} \mathscr{W}(\xi) &= \mathscr{T}_0(\xi) + \eta \, \mathscr{T}_5(\xi) \\ &- \alpha_{\Lambda}^2 \left(\mathscr{T}_1(\xi) + \sqrt{1 - \eta^2} \cos(\Delta \Phi) \, \mathscr{T}_2(\xi) + \eta \, \mathscr{T}_6(\xi) \right) \\ &+ \alpha_{\Lambda} \sqrt{1 - \eta^2} \sin(\Delta \Phi) \left(\mathscr{T}_3(\xi) - \mathscr{T}_4(\xi) \right). \end{aligned}$$

$$\left|\frac{G_E}{G_M}\right| = 0.96 \pm 0.14(stat.) \pm 0.02(sys.)$$
$$\Delta \Phi = 37^{\circ} \pm 12^{\circ}(stat.) \pm 6^{\circ}(sys.)$$

Phys.Lett. B772 (2017) 16-20

Fit data by Maximum Log Likelihood

Threshold effect

- Hyperon pair production:
 - Possibility to reconstruct hyperon pair production much close to threshold than the proton

Measurement of $e^+e^- \rightarrow \Lambda \overline{\Lambda}$ at $\sqrt{s} = 2.2324$ GeV Phys. Rev. D 97, 032013 (2018)

- Near threshold production (2 M_{Λ} +1.0 MeV) and small PHSP in $\Lambda/\bar{\Lambda}$ decays
- Indirect search for antiproton in $\Lambda o p\pi^-$, $\overline{\Lambda} o \overline{p}\pi^+$
- Search for mono-energetic π^0 in $\overline{A} \to \overline{n} \pi^0$

• The anomalous behavior differing from the pQCD prediction at threshold is observed.

•Recalling the baryon pair production cross section: $\sigma_{B\bar{B}}(q) = \frac{4\pi\alpha^2 C\beta}{3q^2} [|G_M(q)|^2 + \frac{1}{2\tau} |G_E(q)|^2]$ •The Columb correction factor $C = \frac{\pi\alpha}{\beta} \frac{1}{1 - \exp(-\frac{\pi\alpha}{\beta})}$ (Q), cancel the β for a charged $B\bar{B}$ pair, equals to 1 for a neutral $B\bar{B}$ pair

A possible resonance around $\Lambda\overline{\Lambda}$ resonance?

- A hint for resonance around $\Lambda \overline{\Lambda}$ threshold in $e^+e^- \rightarrow KKKK$ cross section
 - Mass=2232±3.5 MeV, width=20 MeV

$e^+e^- \rightarrow \Lambda_c^+ \overline{\Lambda}_c^-$ near kinematic threshold

Phys. Rev. Lett. 120, 132001 (2018)

> Ten modes of Λ_c^+ ($\overline{\Lambda}_c^-$) are reconstructed

Measurement of the Born cross section at 4 energy points below 4.6 GeV with unprecedented statistical accuracy (~1.3% at 4.6 GeV)

Summary and discussion

- Nucleon FFs is measured with scan and ISR techniques at BESIII
 - Answered the remaining questions on proton FFs
 - Precise measurement on neutron FFs is ongoing
- With the large data set, more precise
- results on Hyperon FFs are expected on BESIII.
 - More precise cross section line-shape
 - Test on threshold effect
 - Complete determination of G_E and G_M

Thank you for the attention!