

中国科学院高能物理研究所

Workshop on form factor, polarization and CP violation in quantum-correlated hyperon-anti-hyperon production, 6-8 July 2019 Fudan University

Λ_c spin

20-plet baryon with SU(3)-octet

$$J = \frac{1}{2}$$

20-plet baryon with SU(3)-decuplet

$$J = \frac{3}{2}$$

Λ_c spin

$$I(J^{P}) = O(\frac{1}{2}^{+})$$
 Status: ****

The parity of the Λ_c^+ is defined to be positive (as are the parities of the proton, neutron, and Λ). The quark content is u d c. Results of an analysis of $p K^- \pi^+$ decays (JEZABEK 92) are consistent with J = 1/2. Nobody doubts that the spin is indeed 1/2.

We have omitted some results that have been superseded by later experiments. The omitted results may be found in earlier editions.

Λ_c spin

- NA2 experiment at CERN-SPS: Phys.Lett., B286, 175 (1992)
- $\pi \operatorname{Cu} \to \Lambda_c^+ \overline{D} X$
- 160 events for $\Lambda_c \to pK^-\pi^+$

Angular distribution of three – body decay

$$I(\theta, \phi) = \frac{2J+1}{4\pi}$$

$$\times \sum_{M,M'} \mathcal{Q}_{MM'}^{J} \sum_{\mu} f_{\mu}^{J} D_{M\mu}^{J*}(\phi, \theta, 0) D_{M'\mu}^{J}(\phi, \theta, 0) ,$$

$$I(\theta) = \frac{1}{2} \left(1 + \sum_{l=1}^{2J} d_{l} P_{l}(\cos \theta) \right),$$

$$d_{l} \equiv p_{l} a_{l},$$

$$p_{l} = \sqrt{2l+1} \sum_{m} \mathcal{Q}_{MM}^{J} \langle J, M; l, 0 | J, M \rangle,$$

$$a_{l} = \sqrt{2l+1} \sum_{\mu} f_{\mu}^{J} \langle J, \mu; l, 0 | J, \mu \rangle.$$

$$4$$

$\Lambda_{\mathcal{C}}$ spin

$$\Lambda_c^+(\uparrow) = [ud]c(\uparrow)$$
$$c \to su\bar{d}$$

They concluded:

- Results consistent with assumption J = 1/2
- Unable to established J = 1/2 due to low statistics

Remarks:

- decay parameter should be modeled momentum dependent
- □ resonance structure in 3-body decay should be considered.
- \square only Λ_c longitudinal polarization is used (see $\rho_{M,M}$), and transverse component is missed

PWA results desired. BELLE, BESIII, or LHCb ??

Λ_c^+ decay asymmetry parameters

- Λ analogue of Lee-Yang parameters

$$\Lambda_c^+\bigl(\frac{1}{2}^+\bigr) \to B\left(\frac{1}{2}^+\right)P(0^-)$$

Partial waves: S (parity violation), P(parity conservation)

$$\alpha = \frac{2\operatorname{Re}(S^*P)}{|S|^2 + |P^2|}, \quad \beta = \frac{2\operatorname{Im}(S^*P)}{|S|^2 + |P^2|}, \quad \gamma = \frac{|S|^2 - |P^2|}{|S|^2 + |P^2|}.$$

$$\alpha^2 + \beta^2 + \gamma^2 = 1.$$

Two independent parameters in PDG:

 α and $\phi = \tan^{-1}(\beta/\gamma)$

Σ^+ DECAY PARAMETERS

PDG2018

 $egin{array}{lll} lpha_0 \; {
m FOR} \; arsigma^+ o p \pi^0 & -0.980^{+0}_{-0} \ \phi_0 \; {
m ANGLE} \; {
m FOR} \; arsigma^+ o p \pi^0 \; (\phi_0$ = $eta/\gamma) & 36 \pm 34 \; ^\circ \end{array}$

Λ_c^+ decay asymmetry parameters

In helicity amplitudes, asymmetry parameters defined as

$$S = \frac{1}{\sqrt{2}} \left(F_{\frac{1}{2}} + F_{-\frac{1}{2}} \right), \quad P = \frac{1}{\sqrt{2}} \left(F_{\frac{1}{2}} - F_{-\frac{1}{2}} \right),$$

SO

$$\alpha = \frac{|F_{1/2}|^2 - |F_{-1/2}|^2}{|F_{1/2}|^2 + |F_{-1/2}|^2}, \beta = \sqrt{1 - \alpha^2} \sin \Delta, \quad \gamma = \sqrt{1 - \alpha^2} \cos \Delta$$

 Δ : phase angle difference between two helicity amplitudes.

Λ_c^+ decay asymmetry parameters

• α associated with parity violation, measure the Λ_c^+ decay asymmetry of polar angle distribution.

$$\frac{dN}{d\cos\theta} \propto 1 + \alpha \cos\theta$$

$$\pi^{+} \qquad \text{e.g. } \Lambda_{c}^{+} \to \Lambda \pi^{+}$$

• β measures physics associated with the time transform invariant

C- and P-transformation

CP odd-observables

$$\Delta = \frac{\Gamma - \overline{\Gamma}}{\Gamma + \overline{\Gamma}} , \qquad A = \frac{\alpha + \overline{\alpha}}{\alpha - \overline{\alpha}} ,$$
$$B = \frac{\beta + \overline{\beta}}{\beta - \overline{\beta}}, \qquad B' = \frac{\beta + \overline{\beta}}{\alpha - \overline{\alpha}}$$

$\mathbf{\Lambda}_{c}^{+}$ DECAY PARAMETERS

$lpha$ FOR $arLambda_c^+ o arLambda \pi^+$	-0.91 ± 0.15
$lpha \; {\sf FOR} \; arLambda_c^+ o arLambda^+ \pi^0$	-0.45 ± 0.32
$lpha \; {\sf FOR} \; arLambda_c^+ o arLambda \ell^+ u_\ell$	-0.86 ± 0.04

 $(lpha+arlpha)/(lpha-arlpha) ext{ in } \Lambda_c^+ o \Lambda e^+
u_e ext{ , } \overline{\Lambda}_c^- o \overline{\Lambda} e^- \overline{
u}_e ext{ 0.00} \pm 0.04$

Predictions on Λ_c asymmetry parameters

• Quark diagrams for hadronic weak decays $\Lambda_c \rightarrow B M$

Contrary to the heavy meson decays, W-exchange diagrams make significant contribution to the Λ_c hadronic weak decays.

Predictions on Λ_c asymmetry parameters

• *W*-exchange decay: $\Lambda_c^+ \to \Xi^0 K^+$

Predictions on Λ_c asymmetry parameters

$$\alpha_{[\Lambda\pi^+]}^{[\Lambda_c^+]} \text{ for } \Lambda_c^+ \to \Lambda\pi^+, \quad \alpha_{[\Sigma^+\pi^0]}^{[\Lambda_c^+]} \text{ for } \Lambda_c^+ \to \Sigma^+\pi^0, \quad \alpha_{[\Xi^0K^+]}^{[\Lambda_c^+]} \text{ for } \Lambda_c^+ \to \Xi^0K^+ \text{ and } \alpha_{[pK_S^0]}^{[\Lambda_c^+]} \text{ for } \Lambda_c^+ \to pK_S^0.$$

Parameters	Predictions	Experiments	PDG
	-0.70[8], -0.67[3]	$-0.78 \pm 0.16 \pm 0.19[13]$	
$\alpha^{[\Lambda_c^+]}_{[\Lambda\pi^+]}$	-0.95[4], -0.95[5]	$-0.94^{+0.21+0.12}_{-0.06-0.06}[14]$	-0.91 ± 0.15
	-0.99[6], -0.99[7]	$-0.96 \pm 0.42[17], -1.1^{+0.4}_{-0.1}[15]$	
	0.71[8], 0.92[3]		
$\alpha^{[\Lambda_c^+]}_{[\Sigma^+\pi^0]}$	0.78[4], 0.43[5]	$-0.45 \pm 0.31 \pm 0.06$	-0.45 ± 0.32
[]	0.39[6], -0.31[7]		
- 1-	0[8],0[3]		
$\alpha^{[\Lambda_c^+]}_{[\Xi^0 K^+]}$	0[5],0[6]	•••	
[]	0[7]		
	-1.0[8], 0.51[3]		
$\alpha^{[\Lambda_c^+]}_{[pK^0_{\alpha}]}$	-0.49[4], -0.97[5]	•••	
	-0.66[6], -0.99[7]		

• α for $\Lambda_c^+ \to \Lambda \pi^+$

$$\boldsymbol{\mathcal{P}}_{\Lambda} = \frac{(\alpha + \boldsymbol{\mathcal{P}}_{\Lambda_{c}} \cdot \hat{\boldsymbol{n}}) \hat{\boldsymbol{n}} + \beta (\boldsymbol{\mathcal{P}}_{\Lambda_{c}} \times \hat{\boldsymbol{n}}) + \gamma \hat{\boldsymbol{n}} \times (\boldsymbol{\mathcal{P}}_{\Lambda_{c}} \times \hat{\boldsymbol{n}})}{1 + \alpha \boldsymbol{\mathcal{P}}_{\Lambda_{c}} \cdot \hat{\boldsymbol{n}}}$$

- \mathcal{P}_{Λ} , \mathcal{P}_{Λ_c} : polarization vector for Λ and Λ_c
- \widehat{n} : unit vector along Λ momentum defined in the Λ_c rest frame

- decompose \mathcal{P}_Λ into longitudinal and two transverse polarizations
- If Λ_c is unpolarized, then Λ with degree of polarization α

- FOCUS experiment: Phys.Lett.B634, 165 (2006)
 - \succ FOCUS, γ^* (*beam*) + BeO(*target*) → $\Lambda_c^+ + X$
 - > Assume unpolarized Λ_c^+ , Λ is polarized longitudinally with α_{Λ_c} degree
 - \succ Polarimetry: Λ → $p\pi^-$

After bias correction: $\alpha_{\Lambda_c} = -0.78 \pm 0.16 \pm 0.19$, $\mathcal{A} = \frac{\alpha_{\Lambda_c} - \alpha_{\overline{\Lambda}_c}}{\alpha_{\Lambda_c} + \alpha_{\overline{\Lambda}_c}} = -0.07 \pm 0.16 \pm 0.19$

• CLEO experiment: PLB, 350, 256(1995)

$$1.9/\text{fb}, e^+e^- \rightarrow c\bar{c}, \sqrt{s} \leq \Upsilon(4S)$$

$$\Lambda_c^+ \rightarrow \Lambda \pi^+$$
Efficiency con
$$120 - 1.0 \leq \cos \Theta < 0.5$$

$$0.5 \leq \cos \Theta < 0$$

$$0.5 \leq \cos \Theta < 1.0$$

$$0.25 - Fix \alpha_{\Lambda} = -\alpha$$

$$Yield: \alpha_{\Lambda} = -\alpha$$

2.20

2.35

2.50

2.20

2.35

2.50 2.05

 $A\pi^+$ mass (GeV / c²)

2.05

Efficiency corrected yield ratio

• CLEO experiment: PLB, 350, 256(1995)

• CLEO experiment: PLB, 350, 256(1995)

Comparison of experimental decay widths and asymmetries with model predictions

Reference	$\Lambda_c^+ \to \Lambda \pi^+$	$\Lambda_c^+ o \Sigma^+ \pi^0$
	α	α
CLEO	$-0.94^{+0.21}_{-0.06}{}^{+0.12}_{-0.06}$	$-0.45 \pm 0.31 \pm 0.06$
Xu and Kamal [10]	-0.67	0.91
Cheng and Tseng [11]	-0.96	0.83
Körner and Krämer [12]	-0.70	0.71
Uppal, Verma and Khanna [13]	-0.85	-0.32
Żenczykowski [14]	-0.86	-0.76

[10] Q.P. Xu and An. N. Kamal, Phys. Rev. D 46 (1992) 270.

[11] H. Cheng and B. Tseng, Phys. Rev. D 46 (1992) 1042.

[12] J.G. Körner and M. Krämer, Z. Phys. C 55 (1992) 659.

[13] T. Uppal, R.C. Verma and M.P. Khanna, Phys. Rev. D 49 (1994) 3417.

[14] P. Żenczykowski, Phys. Rev. D 50 (1994) 410.

Transverse polarization of baryons in e^+e^- collisions

Time likespin ½ baryon FFs:

Dubnickova, Dubnicka, Rekalo Nuovo Cim. A109 (1996) 241

Gakh, Tomasi-Gustafsson Nucl.Phys. A771 (2006) 169

Czyz, Grzelinska, Kuhn PRD75 (2007) 074026 FäldtEPJ A51 (2015) 74; EPJ A52 (2016)141 W. Lu, et.al., Phys.Lett., B368, 281 (1996)

$$\Gamma^e_\mu(k_1,k_2) = -ie_\psi \gamma_\mu$$

$$\Gamma^{\Lambda}_{\mu}(p_1, p_2) = -ie_g \left[G^{\psi}_M \gamma_{\mu} - \frac{2M}{Q^2} (G^{\psi}_M - G^{\psi}_E) Q_{\mu} \right]$$

Transverse polarization of baryons in e^+e^- collisions

Unpolarized e^+e^- beam \rightarrow transverse polarization baryon

$$\mathcal{P}_{T} = \frac{\sqrt{1 - \alpha^{2}} \sin \theta \cos \theta \sin \Delta}{1 + \alpha \cos^{2} \theta} \qquad \qquad \alpha = 0.469$$

$$\mathcal{P}_{T} \text{ along } \boldsymbol{k}_{e} + \times \boldsymbol{p}_{B} \qquad \qquad \text{Max } P_{\Lambda} = 36.4\% \qquad \text{if } \Delta \Phi = \frac{\pi}{2}$$

PR.4 r

Transverse polarization of baryons in e^+e^- collisions

• Same formula applicable to $e^+e^- \rightarrow J/\psi \rightarrow B\overline{B}$

BESIII, arXiv: 1808.08917, Nature Physics (2009)

Polarimetry : $\Lambda \to p\pi^-$, $\overline{\Lambda} \to \overline{p}\pi^+$

Spin observables: $\mu = \langle \sin \theta_1 \sin \phi_1 \rangle \propto \mathcal{P}_T$

Transverse polarization: a probe to study Λ_c asymmetry parameters

• Prefer single tag to reconstruct Λ_c events

BESIII: PRL 116, 052001 (2016)

Transverse polarization: a probe to study Λ_c asymmetry parameters

• Prefer single tag to reconstruct Λ_c events

BESIII: PRL 116, 052001 (2016)

Transverse polarization: a probe to study Λ_c asymmetry parameters

 Transverse polarization play the same role as longitudinal polarization to do spin analysis

Example:
$$e^+e^- \rightarrow \gamma^* \rightarrow \Lambda_c^+ \overline{\Lambda}_c^-$$
, $\Lambda_c^+ \rightarrow \Lambda \pi^+$

 Λ_c plays the role of polarimetry:

$$p$$

$$\pi^{-} (\theta_{2}, \phi_{2})$$

$$\Lambda^{-} (\theta_{1}, \phi_{2})$$

$$e^{+} \Lambda_{c} (\theta, \phi)$$

$$e^{-}$$

$$\overline{\Lambda}_{c}$$

 $\mathcal{W}(\theta, \theta_1, \phi_1) \propto 1 + \alpha \cos^2 \theta + (\sqrt{1 - \alpha^2} \sin \theta \cos \theta \sin \Delta) \sin \theta_1 \sin \phi_1 \alpha_{\Lambda_c}$

If take $\Lambda \rightarrow p\pi^-$ as polarimetry:

$$\mathcal{W}(\theta_2) \propto 1 + \alpha_{\Lambda_c} \alpha_{\Lambda} \cos \theta_2$$

Strategy to measure Λ_c asymmetry parameters

- Prefer single tag method, e.g. $e^+e^- \rightarrow \Lambda_c^+ \overline{\Lambda}_c^-$, $\Lambda_c^+ \rightarrow B\left(\frac{1}{2}^+\right) P(0^-), \overline{\Lambda}_c^- \rightarrow \text{anything, and its conjugate}$ mode
- Simultaneous fit to multiple Λ_c decay modes, e.g. $\Lambda_c^+ \rightarrow \Lambda \pi^+, \Sigma^+ \pi^0, \Sigma^0 \pi^+, pK_S^0$
- Formula involved Λ_c transverse polarization, and assume CP conservation, and spin-1/2 for Λ_c .
- Physics outcome: $\alpha, \Delta, \ \alpha_{\Lambda_c}(\Lambda_c^+ \to \Lambda \pi^+), \ \alpha_{\Lambda_c}(\Lambda_c^+ \to \Sigma^0 \pi^+), \ \alpha_{\Lambda_c}(\Lambda_c^+ \to \Sigma^+ \pi^0), \ \alpha_{\Lambda_c}(\Lambda_c^+ \to p K_S^0)$

Decay asymmetry parameters @BESIII

- $\mathcal{L} = 567 \text{ pb}^{-1}$ at $\sqrt{s} = 4.6 \text{ GeV}$
- Simultaneously fit to 4 decay modes, with $\overline{\Lambda}_c^-$ decays incorporated.
- 2. $1\sigma \Lambda_c^+$ transverse polarization.

BESIII, arXiv:1905.04707

Parameters	$\Lambda_c \rightarrow p K_S$	$\Lambda\pi$	$\Sigma^+\pi^\circ$	$\Sigma^{\circ}\pi^{+}$
α_{BP}^+	$0.18 \pm 0.43 \pm 0.14$	$-0.80 \pm 0.11 \pm 0.02$	$-0.57\pm 0.10\pm 0.07$	$-0.73 \pm 0.17 \pm 0.07$
α_{BP}^+ (PDG)		-0.91 ± 0.15	-0.45 ± 0.32	
β_{BP}		$0.06^{+0.58+0.05}_{-0.47-0.06}$	$-0.66^{+0.46+0.22}_{-0.25-0.02}$	$0.48^{+0.35+0.07}_{-0.57-0.13}$
γ_{BP}		$-0.60^{+0.96+0.17}_{-0.05-0.03}$	$-0.48^{+0.45+0.21}_{-0.42-0.04}$	$0.49^{+0.35+0.07}_{-0.56-0.12}$
$\Delta_1^{BP}(\mathrm{rad})$		$3.0 \pm 2.4 \pm 1.0$	$4.1 \pm 1.1 \pm 0.6$	$0.8 \pm 1.2 \pm 0.2$

Issues to distinguish between spin J = 1/2 and J = 3/2 for Λ_c

- For simplicity, we use decays $\Lambda_c \to B\left(\frac{1}{2}^+\right)M(0^-)$ to study Λ_c -spin
- Equivalent to measure spin density matrix of Λ_c , spin-3/2 case introduces more parameters. It's difficult to distinguish these two case in angular distribution if J = 1/2.
- Likelihood test applicable to do significance test.
- Intend to do simultaneous fit to $\Lambda_c(\overline{\Lambda}_c)$ decays to the baryon and meson.

Likelihood test for spin J = 1/2 and J = 3/2 for Λ_c

• Example of ToyMC study

Summary and outlook

- Transverse polarization offers us a unique tool to study the Λ_c asymmetry parameters.
- With the accumulated 567/pb data at 4.6 GeV at BESIII, analysis result of Λ_c spin will come soon.
- BESIII will taken a large date set for study Λ_c properties.

Thanks for your attention!