

Workshop on form factor, polarization and CP violation in quantum correlated hyperon-antihyperon production

> Fudan University, Shanghai, 7-8 July 2019

 $J/\psi, \psi'$

G. López Castro (Cinvestav, México)

Simpler HME (than Nuclear $0\nu\beta\beta$ decays)

Based on three old papers on $\Delta L = 2$ hyperon decays:

BLNV-03: C. Barbero, GLC and A. Mariano, Phys. Lett. B566,98 (2003)

BLNV-07: C. Barbero, L. F. Li, GLC and A. Mariano, Phys Rev D76, 116008 (2007)

BLNV-13: C. Barbero, L. F. Li, GLC and A. Mariano, Phys Rev D87, 036010 (2013)

Based on three old papers on $\Delta L = 2$ hyperon decays:

BLNV-03: C. Barbero, GLC and A. Mariano, Phys. Lett. B566,98 (2003)

BLNV-07: C. Barbero, L. F. Li, GLC and A. Mariano, Phys Rev D76, 116008 (2007)

BLNV-13: C. Barbero, L. F. Li, GLC and A. Mariano, Phys Rev D87, 036010 (2013)

Little experimental information (PDG 2018)

	BR (90% c. l.)	Ref.
$\Xi^- ightarrow p\mu^-\mu^-$	$< 4.0 \times 10^{-8}$	HyperCP Collab (2005)
	$< 3.7 \times 10^{-4}$	Schrock-Littenberg (1992)
$\Lambda_c^+ \to \Sigma^- \mu^+ \mu^+$	$<7.0\times10^{-4}$	E653 Collab (1995)

Hai-Bo Li, Front Phys (2017): can reach 10^{-7} sensitivity at BESIII

Plan:

* $\Delta L = 2$ processes and Majorana neutrinos

* $2\nu\beta\beta$ hyperon decays (rare, background)

- * $0\nu\beta\beta$ hyperon decays (forbidden)
- Model-independent bound
- Loop-model
- Matrix elements within a Bag Model

Main motivation: Majorana neutrinos

- No fundamental reason for L (and B) conservation (unlike Q, C)
- Profoundly important to observe L& B (BAU)

 $\Delta B = 1, \quad \Delta L = \pm 1 : p \to e^+\pi, \text{ single nucleon decay}$ $\Delta B = 2, \quad \Delta L = 0 : n \leftrightarrow \bar{n}, \text{ oscillations}$ $\Delta B = 0, \quad \Delta L = 2 : B^- \to B'^+ \ell^- \ell'^-, \quad 0\nu\beta\beta \text{ decays}$

Majoranas look unavoidable for massive neutrinos.

$$\left[\overline{\nu_R^c} M \nu_R \Rightarrow \left| \Delta L \right| = 2 \right]$$

Main motivation: Majorana neutrinos

- No fundamental reason for L (and B) conservation (unlike Q, C)
- Profoundly important to observe k & B (BAU)

 $\Delta B = 1, \quad \Delta L = \pm 1 : p \to e^+\pi, \text{ single nucleon decay}$

 $\Delta B = 2, \quad \Delta L = 0 \quad : n \leftrightarrow \bar{n}, \text{ oscillations}$

 $\Delta B = 0, \quad \Delta L = 2 \quad : B^- \to B'^+ \ell^- \ell'^-, \quad 0\nu\beta\beta \text{ decays}$

Majoranas look unavoidable for massive neutrinos.

	N mass	v masses	eV v anoma– lies	BAU	DM	M _H stability	direct search	experi– ment
GUT see-saw	^{10–16} 10 GeV	YES	NO	YES	NO	NO	NO	_
EWSB	2-3 10 GeV	YES	NO	YES	NO	YES	YES	LHC
v MSM	keV – GeV	YES	NO	YES	YES	YES	YES	a'la CHARM
V scale	eV	YES	YES	NO	NO	YES	YES	a'la LSND

ν]

Different mass scales are technically possible and worth exploring!

```
Drewes, 1303.6912;
de Gouvea, 0706.1732
```

Intensive experimental searches of $\Delta L = 2$

•
$$(A, Z) \rightarrow (A, Z+2)e^-e^-$$

- $M_1^{\pm} \to M_2^{\pm} \ell^{\pm} \ell'^{\pm}$ (M = meson, $\ell = e\mu, \tau$)
- $\tau^{\pm} \to \ell^{\mp} M_1^{\pm} M_2^{\pm}$
- $e^- \to \mu^+$ conversion in nuclei
- $pp, \ p\bar{p} \to \ell^{\pm} \ell'^{\pm} X$
- $B_i^{\mp} \to B_f^{\pm} \ell^{\mp} \ell'^{\mp}$

Sensitivities to different mass scales and mixings, complementary

Sterile neutrinos would couple to matter only through the mixing with active neutrinos vía charged currents

$$\nu_{\ell} = \sum_{i=1}^{3} U_{\ell i} \nu_{i} + \sum_{M=4}^{n+4} V_{\ell M} \nu_{M}$$

$$\mathscr{L}^{\rm cc} = \frac{G_F}{\sqrt{2}} \bar{\nu}_{\ell} \gamma^{\mu} (1 - \gamma_5) \ell W_{\mu} + \text{h.c.}$$

Sterile neutrinos would couple to matter only through the mixing with active neutrinos vía charged currents

1. Very light Majorana neutrino

Most sensitive is neutrinoless nuclear double-beta decay

Tree- or loop-level phenomenon?

Nuclear matrix elements difficult to calculate & g_A in nuclei $\left(T_{1/2}^{0\nu}\right)^{-1} = G^{0\nu} \cdot \left|\mathcal{M}^{0\nu}\right|^2 \cdot \langle m_{ee} \rangle^2$

 $|\langle m_{ee} \rangle| \sim O(0.1 - 0.2) \text{ eV}$

2. Intermediate mass neutrinos (0.1~ 5 GeV)

A. Atre et al, JHEP05, 030 (2009) +many others

Contribution of only one Majorana neutrino N

 $\bigwedge M_1^-$

Resonance enhancement

$$\tau \longrightarrow \nu_M \longrightarrow M_2^-$$

$$BR = \frac{G_F^4 |U_{\ell N} U_{\ell' N}|^2 m_N^2}{\Gamma_N^2} |V_1^{CKM} V_2^{CKM}|^2 f(m_N, \cdots)$$

Searches for $\Delta L = 2$ proceses at low energies

Three-body decays

Four-body decays

Exclusion plots

$$BR = \frac{G_F^4 |U_{\ell N} U_{\ell' N}|^2 m_N^2}{\Gamma_N^2} \times |V_1^{CKM} V_2^{CKM}|^2 f(m_N, \cdots)$$

Neutrino Minimal Standard Model (ν MSM): ME + $(N_1, N_2, N_3)_R$ (estériles)

$$\nu_\ell = \sum_{j=1}^3 V_{\ell j}^{\text{PMNS}} \nu_j + \sum_{k=1}^3 U_{\ell k} N_k$$

 $M_{N_1} \sim$ (10 - 100) keV (Dark matter) $M_{N_{2,3}} \sim \mathcal{O}(1 \text{ GeV}) \text{ (BAU)}$

Canetti, Drewes, & Shaposhnikov PRL 110, 061801 (2013) Canetti, Drewes, Frossard, & Shaposhnikov PRD 87, 093006 (2013) Asaka, Blanchet, & Shaposhnikov PLB 631, 151 (2005)

$2\nu\beta\beta$ hyperon decays

 $B_i^- \to B_f^+ \ell^- \ell'^- \bar{\nu}_\ell \bar{\nu}_{\ell'}$

 $dd \to u u \ell^- \ell^{\prime -} \bar{\nu}_\ell \bar{\nu}_{\ell^\prime}$

$2\nu\beta\beta$ hyperon decays

- * Intermediate states crucial (assumption: same octet)
- * Short-lived B* (Σ^0) important background for $0\nu\beta\beta$ hyperon decays. Long-lived (*n*) easily discriminated

BLNV-03, 07

- \bullet Assume decay chain: $B_i^- \to B^{*0} \ell^- \bar{\nu} \to B_f^+ \ell^- \ell'^- \bar{\nu} \bar{\nu}'$
- B*=neutron decays outside detector, discriminated
- B*= Σ^0 decays at same vertex ($\tau(\Sigma^0) = 7.4 \times 10^{-20}$ s)

Channel	BR	Dominant B^*	
$\Sigma^- \to \Sigma^+ e^- e^- \bar{\nu} \bar{\nu}$	0.86×10^{-30}	Σ^0	$\leftarrow 1.36 \times 10^{-30}$
$\rightarrow p e^- e^- \bar{\nu} \bar{\nu}$	4.77×10^{-8}	Λ	
$\rightarrow p\mu^- e^- \bar{\nu}\bar{\nu}$	9.0×10^{-9}	Λ	Exact calculation
$\rightarrow p\mu^{-}\mu^{-}\bar{\nu}\bar{\nu}$	~ 0	Λ	BLNV-03
$\Xi^- \to \Sigma^+ e^- e^- \bar{\nu} \bar{\nu}$	6.59×10^{-14}	Ξ^0	_
$\rightarrow \Sigma^+ \mu^- e^- \bar{\nu} \bar{\nu}$	1.20×10^{-15}	Ξ^0	Largely dominated
$\rightarrow p e^- e^- \bar{\nu} \bar{\nu}$	4.68×10^{-7}	Λ	by intermediate
$\rightarrow p\mu^- e^- \bar{\nu}\bar{\nu}$	3.80×10^{-7}	Λ	by intermediate
$\rightarrow p\mu^{-}\mu^{-}\bar{\nu}\bar{\nu}$	5.49×10^{-7}	Λ	on-shell states

BLNV-07

$0\nu\beta\beta$ hyperon decays

$$B_i^- \to B_f^+ \ell^- \ell'^- \qquad \left(dd \to uu\ell^- \ell'^-\right)$$

	$\Delta S = 0$	$\Delta S = 1$	$\Delta S = 2$
	$\Sigma^+ e^- e^-$	pe^-e^-	_
$\Sigma^{-} \rightarrow$	-	$p\mu^-e^-$	-
	_	$p\mu^-\mu^-$	_
	-	$\Sigma^+ e^- e^-$	pe^-e^-
$\Xi^- ightarrow$	-	$\Sigma^+\mu^-e^-$	$p\mu^-e^-$
	-	-	$p\mu^-\mu^-$
	-	-	$\Sigma^+ e^- e^-$
$\Omega^- \rightarrow$	-	-	$\Sigma^+\mu^-e^-$
	_	-	$\Sigma^+\mu^-\mu^-$

Allowed by phase space

 $\left| V_{ud} \right|^4 \qquad \left| V_{ud} V_{us} \right|^2 \qquad \left| V_{us} \right|^4$

 $B(0\nu\beta\beta) \sim \left| m_{\ell\ell'} \right|^2 \left| V_{ui} V_{uj} \right|^2 \cdot \left| \mathscr{M} \mathscr{E} \right|^2 PS$

$0\nu\beta\beta$ hyperon decays

$$B_i^- \to B_f^+ \ell^- \ell'^- \qquad \left(dd \to uu\ell^- \ell'^-\right)$$

	$\Delta S = 0$	$\Delta S = 1$	$\Delta S = 2$
	$\Sigma^+ e^- e^-$	pe^-e^-	-
$\Sigma^{-} \rightarrow$	_	$p\mu^-e^-$	-
	_	$p\mu^-\mu^-$	-
	-	$\Sigma^+ e^- e^-$	pe^-e^-
$\Xi^- ightarrow$	_	$\Sigma^+\mu^-e^-$	$p\mu^-e^-$
	_	_	$p\mu^-\mu^-$
	-	-	$\Sigma^+ e^- e^-$
$\Omega^- \rightarrow$	-	-	$\Sigma^+\mu^-e^-$
	_	-	$\Sigma^+\mu^-\mu^-$

Allowed by phase space

 $\left| V_{ud} \right|^4 \qquad \left| V_{ud} V_{us} \right|^2 \qquad \left| V_{us} \right|^4$

 $B(0\nu\beta\beta) \sim \left| m_{\ell\ell'} \right|^2 \left| V_{ui} V_{uj} \right|^2 \cdot \left| \mathcal{M} \mathcal{E} \right|^2 PS$

A model-independent estimate

Most general lagrangian for $\Delta L = 2$ semileptonic hyperon decays

$$\mathcal{L}^{\Delta L=2} = \frac{G_F^2}{\Lambda_{\beta\beta}} \left\{ c_{ij}^{\ell\ell'} (\bar{u}\Gamma_i d_i) (\bar{u}\Gamma_j d_j) (\bar{\ell}\Gamma\ell'^c) + \text{h.c.} \right\} \begin{array}{c} \text{Ling Fong Li,} \\ \text{0706.2815} \end{array}$$

A model-independent estimate

Most general lagrangian for $\Delta L = 2$ semileptonic hyperon decays

$$\mathcal{L}^{\Delta L=2} = \frac{G_F^2}{\Lambda_{\beta\beta}} \left\{ c_{ij}^{\ell\ell'} (\bar{u}\Gamma_i d_i) (\bar{u}\Gamma_j d_j) (\bar{\ell}\Gamma\ell'^c) + \text{h.c.} \right\} \begin{array}{c} \text{Ling Fong Li,} \\ \text{O706.2815} \end{array}$$

Order of magnitude estimates, $c_{ij} \sim O(1)$:

$$\begin{split} \frac{\Gamma(B_1 \to B_2 \ell \ell')}{\Gamma(B_1 \to B'_2 \ell \nu_\ell)} &= \left(\frac{G_F}{\Lambda_{\beta\beta}}\right)^2 \left| \frac{\langle B_2 | (\bar{u} \Gamma_i d_i) (\bar{u} \Gamma_j d_j) | B_1 \rangle}{\langle B'_2 | \bar{u} \Gamma d | B_1 \rangle} \right|^2 \text{PS} \\ &= \left(\frac{G_F}{\Lambda_{\beta\beta}}\right)^2 M^6 \text{PS} \\ &\approx \left(\frac{M}{\Lambda_{\beta\beta}}\right)^2 \times 10^{-10} \quad \text{M ~-1 GeV} \end{split}$$
L. F. Li, 0706.2815
$$&B(B_1 \to B_2 \ell^- \ell'^-) < 10^{-14} \end{split}$$

 $\frac{1}{\Lambda_{RR}} = \frac{m_{\nu_M}}{\Lambda'^2}$ Strong suppression for light Majorana neutrinos

A loop-model for $B_i^- \to B_f^+ \ell^- \ell^{\prime-}$

BLNV-03, BLNV-07

A loop-model for $B_i^- \to B_f^+ \ell^- \ell^{\prime-}$

Approximated hadronic matrix element
$$\langle B_f | j_\mu | B_i \rangle = \bar{u}_f \gamma_\mu \left(f^{if} + g^{if} \gamma_5 \right) u_i$$

Logarithmic
divergence
$$I_{B*}(p_{\ell}) \sim \int_{0}^{1} dx \left[(p_{i} - p_{\ell}) + m_{B*} \right] \int_{0}^{\Lambda_{c}} \frac{k^{3} dk}{(k^{2} + M^{2})^{2}}$$

 $\Lambda \sim 1 \text{ GeV} \sim (d_{nn})^{-1}$ In $0\nu\beta\beta$ nuclear decays

d

 $B(\Sigma^{-} \to \Sigma^{+} e^{-} e^{-}) = 1.5 \times 10^{-35}$

Since rates scales as $\left(\Delta M_{if}\right)^5$, larger rates expected for other channels

		$\Gamma_{0 u}/\langle m_{\ell\ell'} \rangle^2$	$\mathcal{B}(B_i \to B_f \ell \ell)$
		$[\mathrm{sec}^{-1}\mathrm{MeV}^{-2}]$	
BLNV-07	$\Sigma^- \to \Sigma^+ e^- e^-$	1.0×10^{-15}	1.5×10^{-35}
	$\Sigma^- \to p e^- e^-$	5.0×10^{-9}	7.4×10^{-31}
$\Lambda_c = 1 \text{ GeV}$	$\Sigma^- \to p \mu^- \mu^-$	4.3×10^{-10}	6.3×10^{-20}
$\langle m_{ee} \rangle = 10 \text{ eV},$	$\Xi^- \rightarrow \Sigma^+ e^- e^-$	8.4×10^{-14}	1.4×10^{-33}
$\langle m_{\mu\mu} \rangle = 10 \text{ MeV}$	$\Xi^- ightarrow pe^-e^-$	1.1×10^{-12}	1.9×10^{-32}
	$\Xi^- ightarrow p \mu^- \mu^-$	4.8×10^{-13}	7.9×10^{-21}

		$\Gamma_{0\nu}/\langle m_{\ell\ell'}\rangle^2$	$\mathcal{B}(B_i \to B_f \ell \ell)$
		$[\mathrm{sec}^{-1}\mathrm{MeV}^{-2}]$	
BLNV-07	$\Sigma^- \to \Sigma^+ e^- e^-$	1.0×10^{-15}	1.5×10^{-35}
	$\Sigma^- ightarrow pe^-e^-$	5.0×10^{-9}	7.4×10^{-31}
$\Lambda_c = 1 \text{ GeV}$	$\Sigma^- \to p \mu^- \mu^-$	4.3×10^{-10}	6.3×10^{-20}
$\langle m_{ee} \rangle = 10 \text{ eV},$	$\Xi^- \rightarrow \Sigma^+ e^- e^-$	8.4×10^{-14}	1.4×10^{-33}
$\langle m_{\mu\mu} \rangle = 10 \text{ MeV}$	$\Xi^- ightarrow pe^-e^-$	1.1×10^{-12}	1.9×10^{-32}
	$\Xi^- o p \mu^- \mu^-$	4.8×10^{-13}	7.9×10^{-21}

HyperCP UL
$$B(\Xi^- \rightarrow p\mu^-\mu^-) < 4.0 \times 10^{-8} \Rightarrow ||m_{\mu\mu}|| < 22 \text{ TeV}$$

$$|\langle M_{\mu\mu}\rangle| < \begin{cases} 0.04 \text{ TeV}, \text{ from } K^+ \to \pi^- \mu^+ \mu^+ \text{ (2000)} \\ 2.90 \text{ TeV}, ep \to X\mu^+ \mu^+ \text{ from HERA}, \\ W. \text{ Rodejohann (2002)} \end{cases}$$

$0\nu\beta\beta$ hyperon decays within the MIT Bag

In an effective lagrangian approach L. F. Li, 0706.2815

$$-\mathcal{L}_{\Delta L=2} = \frac{G_F^2}{\Lambda_{\beta\beta}} \left\{ c_1(\bar{u}\Gamma_i d)(\bar{u}\Gamma_j d) + c_2\left[(\bar{u}\Gamma_i d)(\bar{u}\Gamma_j s) + (\bar{u}\Gamma_i s)(\bar{u}\Gamma_j d)\right] + c_3(\bar{u}\Gamma_i s)(\bar{u}\Gamma_j s) \right\}$$
$$\times \left\{ d_1(\bar{e}\Gamma_k e^c) + d_2(\bar{\mu}\Gamma_k \mu^c) + d_3\left[\bar{e}\Gamma_k \mu^c + (\bar{\mu}\Gamma_k e^c)\right)\right\}$$

$$\langle B_f | (V - A)_{\alpha} (V' - A')_{\beta} | B_i \rangle = \bar{u}(p_f) \left[\Gamma^V_{\alpha\beta} - \Gamma^A_{\alpha\beta} \right] u(p_i)$$

Lengthly most general form of vector and axial vértices BNLV-13

$$\begin{split} \Gamma^{V}_{\alpha\beta} &= h_{1}g_{\alpha\beta} + ih_{2}\sigma_{\alpha\beta} + \frac{h_{3}}{2M}\gamma_{\alpha}P_{\beta} + \frac{h_{4}}{2M}\gamma_{\alpha}q_{\beta} + \frac{h_{5}}{2M}\gamma_{\beta}P_{\alpha} + \frac{h_{6}}{2M}\gamma_{\beta}q_{\alpha} + \frac{h_{7}}{4M^{2}}P_{\alpha}q_{\beta} + \frac{h_{8}}{4M^{2}}q_{\alpha}q_{\beta} \\ &+ i\frac{h_{9}}{4M^{2}}P_{\alpha}\sigma_{\beta\mu}q^{\mu} + i\frac{h_{10}}{4M^{2}}q_{\alpha}\sigma_{\beta\mu}q^{\mu} + i\frac{h_{11}}{4M^{2}}P_{\beta}\sigma_{\alpha\mu}q^{\mu} + i\frac{h_{12}}{4M^{2}}q_{\beta}\sigma_{\alpha\mu}q^{\mu} + ih_{13}\epsilon_{\alpha\beta\mu\nu}\sigma^{\mu\nu}\gamma_{5} \\ &+ \frac{h_{14}}{4M^{2}}\epsilon_{\alpha\beta\mu\nu}P^{\mu}q^{\nu}\gamma_{5} + \frac{h_{15}}{2M}\epsilon_{\alpha\beta\mu\nu}q^{\mu}\gamma^{\nu}\gamma_{5} + \frac{h_{16}}{2M}\epsilon_{\alpha\beta\mu\nu}P^{\mu}\gamma^{\nu}\gamma_{5}, \end{split}$$

MIT Bag-model (A. Chodos et al, 1974)

- Only a few form factors contribute in the non-relativistic approximation (neglect momentum transfer $q/M \to 0, \ h_i(q^2) = h_i(0)$)
- -Spin-flavor wavefunctions for hyperon states

$$\frac{\Sigma^- \to p e^- e^-}{B^{\text{bag}}} \qquad B^{\text{bag}}(\Sigma^- \to p e^- e^-) = \left(\frac{c_2 d_1}{\Lambda_{\beta\beta}}\right)^2 \cdot (4.65 \times 10^{-13} \text{ MeV}^2).$$

DINN/12

MIT Bag-model (A. Chodos et al, 1974)

- Only a few form factors contribute in the non-relativistic approximation (neglect momentum transfer $q/M\to 0,\ h_i(q^2)=h_i(0)$)
- -Spin-flavor wavefunctions for hyperon states

$$\frac{\Sigma^{-} \to pe^{-}e^{-}}{M_{\beta\beta} \sim 1} B^{\text{bag}}(\Sigma^{-} \to pe^{-}e^{-}) = \left(\frac{c_{2}d_{1}}{\Lambda_{\beta\beta}}\right)^{2} \cdot (4.65 \times 10^{-13} \text{ MeV}^{2}).$$

$$c_{i}, d_{i} \sim O(1) \\ \Lambda_{\beta\beta} \sim 1 \text{ TeV} \} \Rightarrow \qquad B^{\text{bag}}(\Sigma^{-} \to pe^{-}e^{-}) \sim 10^{-25}$$

$$compared \text{ to } B^{\text{loop}}(\Sigma^{-} \to pe^{-}e^{-}) = \left(\frac{\langle m_{ee} \rangle}{10 \text{ } eV}\right)^{2} \cdot 7.4 \times 10^{-31} \text{ BLNV-07}$$

Possible stronger limits on $\langle m_{\mu\mu} \rangle$ from $\Xi^- \to p \mu^- \mu^-$ in the Bag model

BLNV with a resonant Majorana neutrino

Sensitive to Majorana neutrino in the range

$$m_{\ell'} + m_\pi \le m_N \le m_{B_i} - m_{B_f} - m_\ell$$

w/ C.S. Kim and D. Sahoo

Only possible channels

$$\begin{split} \Lambda &\to p e^- e^- \pi^+ \\ \Sigma^- &\to n e^- e^- \pi^+, \ n e^- \mu^- \pi^+ \\ \Xi^- &\to \Lambda e^- e^- \pi^+ \end{split}$$

Final remarks

* First useful limits on forbidden $\Delta L = 2$ baryon decays can be obtained at BESIII !

* Observe for the first time $B(\Xi^- \to p\ell^-\ell^{'-}\bar{\nu}_\ell\bar{\nu}_{\ell'}) \sim 5 \times 10^{-7}$?

* Direct limits on effective Majorana masses $\langle m_{e\mu} \rangle$ and $\langle m_{\mu\mu} \rangle$.

* Evaluation of hadronic matrix elements of BLN decays is challenging. A more reliable evaluation is necessary and important to draw meaningfull/competitive limits on other $\langle m_{\ell\ell'} \rangle$ entries from BLNV

Thank you!

Backup slides

Decay amplitude for the loop proceses

$$\mathcal{M} = G^2 \sum_{j} m_j U_{\ell j} U_{\ell' j} \int \frac{d^4 q}{(2\pi)^4} \frac{1}{q^2 - m_j^2} L^{\alpha \beta}(p_\ell, p_{\ell'}) H_{\alpha \beta}(Q(q))$$

Leptonic current

$$L_{\alpha\beta}(p_1, p_2) = \bar{u}_\ell(p_1)\gamma_\beta(1-\gamma_5)\gamma_\beta u^c_{\ell'}(p_2)$$

Hadronic current

$$H_{\alpha\beta}(Q(q)) = \sum_{B^*} \bar{u}(p_f) \gamma_{\alpha} (f^{B^*f} + g^{B^*f} \gamma_5) \frac{Q + m_{B^*}}{Q^2 - m_{B^*}^2} \gamma_{\beta} (f^{B^*i} + g^{B^*i} \gamma_5) u(p_i)$$

Intermediate hyperon states contributions with leading form factors in SU(3) flavor limit

transition	η	$f_{A\eta}$	$g_{A\eta}$	$f_{B\eta}$	$g_{B\eta}$
$\Sigma^- \rightarrow \Sigma^+$	$\Lambda \Sigma^0$	$\sqrt{2}^{0}$	0.656 0.655	$\sqrt[]{2}$	0.656 -0.656
$\Sigma^- \rightarrow p$	$n \\ \Sigma^0 \\ \Lambda$		0.341 0.655 0.656	$1 \\ -1/\sqrt{2} \\ -\sqrt{3/2}$	1.2670 0.241 -0.895
$\Xi^- \rightarrow \Sigma^+$	Ξ ⁰ Σ ⁰ Λ	-1 $\frac{1/\sqrt{2}}{\sqrt{3/2}}$	0.341 0.896 0.239		1.267 -0.655 0.656
$\Xi^- \rightarrow p$	$\Sigma^0 \over \Lambda$	$\frac{1/\sqrt{2}}{\sqrt{3/2}}$	0.896 0.239	$-1/\sqrt{2} -\sqrt{3/2}$	0.241 -0.895

MIT Bag Model A. Chodos et al (1974),

- Calculation of hadronic matrix element, for example

 $\Sigma^- \rightarrow p e^- e^-$

- Spin-flavor wavefunctions for hyperons

$$\begin{split} X_{\alpha\beta}^{\Sigma^{-} \to p}(V) &= \bar{u}(p')\Gamma_{\alpha\beta}^{V}u(p) \\ &= \langle p | [M_{\alpha\beta}^{ds \to uu} + M_{\alpha\beta}^{sd \to uu}] \\ &+ [Q_{\alpha\beta}^{ds \to uu} + Q_{\alpha\beta}^{sd \to uu}] |\Sigma^{-}\rangle, \end{split}$$

$$\begin{aligned} X_{\alpha\beta}^{\Sigma^{-} \to p}(A) &= \bar{u}(p')\Gamma_{\alpha\beta}^{A}u(p) \\ &= \langle p | [N_{\alpha\beta}^{ds \to uu} + N_{\alpha\beta}^{sd \to uu}] \\ &+ [P_{\alpha\beta}^{ds \to uu} + P_{\alpha\beta}^{sd \to uu}] |\Sigma^{-}\rangle, \end{aligned}$$

$$\begin{split} M^{bd\to ac}_{\alpha\beta} &= \int d^3x [\bar{\psi}_a(x)\gamma_\alpha\psi_b(x)] \cdot [\bar{\psi}_c(x)\gamma_\beta\psi_d(x)], \\ N^{bd\to ac}_{\alpha\beta} &= \int d^3x [\bar{\psi}_a(x)\gamma_\alpha\psi_b(x)] \cdot [\bar{\psi}_c(x)\gamma_\beta\gamma_5\psi_d(x)], \\ P^{bd\to ac}_{\alpha\beta} &= \int d^3x [\bar{\psi}_a(x)\gamma_\alpha\gamma_5\psi_b(x)] \cdot [\bar{\psi}_c(x)\gamma_\beta\psi_d(x)], \\ Q^{bd\to ac}_{\alpha\beta} &= \int d^3x [\bar{\psi}_a(x)\gamma_\alpha\gamma_5\psi_b(x)] \cdot [\bar{\psi}_c(x)\gamma_\beta\gamma_5\psi_d(x)]. \end{split}$$

A. Atre et al, JHEP (2009)

 $N \rightarrow l^{\pm}P^{\mp}, \nu P^{0}, l^{\pm}V^{\mp}, \nu V^{0},$ $l_1^{\pm} l_2^{\mp} v_{l2}, v_{l1} l_2^{\pm} l_2^{-}, v_{l1} v \overline{v}$

Neutrino mass matrix and mixings

Leptonic mass terms in SM + n right-handed singlets after SSB:

$$-L = \overline{v_L} m_D N_R + \frac{1}{2} \left(\overline{N_R^c} M_R N_R + \overline{v_L} M_L v_L^c \right) + h.c.$$

$$M = \begin{pmatrix} M_L & M_D \\ M_D^T & M_R \end{pmatrix} \qquad \text{Diagonalized by} \quad T = \begin{pmatrix} U_{3\times3} & V_{3\times n} \\ X_{n\times3} & Y_{n\times n} \end{pmatrix}, \quad TT^+ = 1$$

$$\begin{pmatrix} v_{iL}^{ph} \\ N_{iR}^{ph} \end{pmatrix} = \begin{pmatrix} U_{ij} v_{jL} + V_{ik} N_{kR}^{c} \\ X_{ij} v_{jL}^{c} + Y_{ik} N_{kR} \end{pmatrix}, \quad V \approx X \approx M_D M_N^{-1}, \quad U^+ M_R + Y^+ M_D = 0$$

$$L_{cc} = -\frac{g}{\sqrt{2}}W^+_{\mu}\sum_{l=e}^{\tau} \left(\sum_{m=1}^3 U^*_{lm}\overline{\nu_m}\gamma^{\mu}P_Ll + \sum_{m'=4}^{3+n}V^*_{lm'}\overline{N^c_{m'}}\gamma^{\mu}P_Ll\right) + h.c.$$

N. Quintero, private