Two-body charmed baryon decays

Yu-Kuo Hsiao (萧佑国) Shanxi Normal university

Workshop on form factor, polarisation and CP violation in quantum-correlated hyperon-anti-hyperon production 2019.07.06

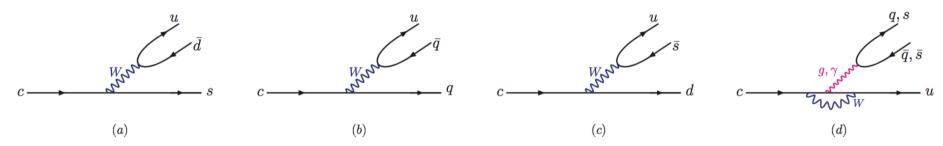
Outline:

- 1. Introduction
- 2. Formalism
- 3. Results
- 4. Summary

Introduction

- Aboundent measurements at BESIII since 2016, such as the η mode. More data coming.
- Theoretical study should be renewed also; besides, giving predictions.
- Non-factorizable effects, significant in \mathbf{B}_c decays like $\Lambda_c^+ \to \Xi^0 K^+$, whose nature is unclear.
- The search for CP violation: $\frac{\mathcal{B}(D^0 \to K^+ K^-)}{\mathcal{B}(D^0 \to \pi^+ \pi^-)} = 2.82 \pm 0.07,$ $\Delta \mathcal{A}_{CP} \equiv \mathcal{A}_{CP}(D^0 \to K^+ K^-) - \mathcal{A}_{CP}(D^0 \to \pi^+ \pi^-)$ = $(-15.4 \pm 2.9) \times 10^{-4}$ (LHCb).

Formalism



$$\mathcal{H}_{eff} = \sum_{i=+,-} \frac{G_F}{\sqrt{2}} c_i \left(V_{cs} V_{ud} O_i + V_{cq} V_{uq} O_i^q + V_{cd} V_{us} O_i' \right)$$

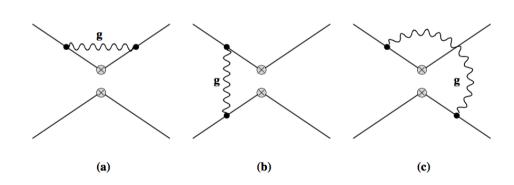
$$(V_{cs}V_{ud}, V_{cd}V_{ud}, V_{cs}V_{us}, V_{cd}V_{us}) = (1, -s_c, s_c, -s_c^2)$$

$$O_{\pm} = \frac{1}{2} \left[(\bar{u}d)(\bar{s}c) \pm (\bar{s}d)(\bar{u}c) \right]$$

$$O_{\pm}^{q} = \frac{1}{2} \left[(\bar{u}q)(\bar{q}c) \pm (\bar{q}q)(\bar{u}c) \right]$$

$$O'_{\pm} = \frac{1}{2} \left[(\bar{u}s)(\bar{d}c) \pm (\bar{d}s)(\bar{u}c) \right]$$

$$(\bar{q}_1 q_2) \equiv \bar{q}_1 \gamma_\mu (1 - \gamma_5) q_2$$



$$(c_+, c_-) = (0.76, 1.78)$$

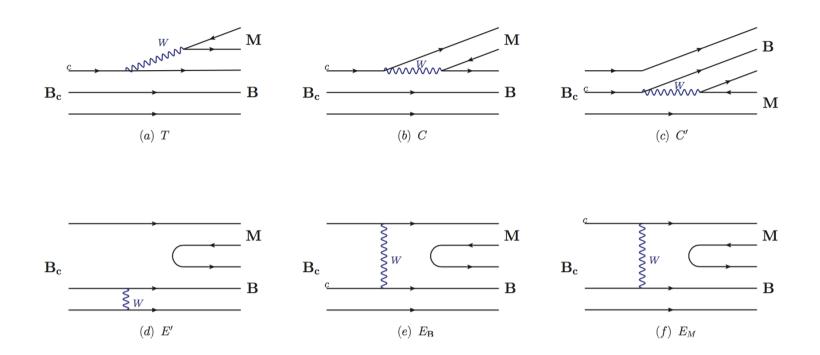


FIG. 1. Topological diagrams for the $\mathbf{B}_c \to \mathbf{B}M$ decays.

$$\mathcal{B}(\Lambda_c^+ \to \Xi^0 K^+) = (5.90 \pm 0.86 \pm 0.39) \times 10^{-3}$$

$$\mathcal{B}(\Lambda_c^+ \to \Xi^{*0} K^+) = (5.02 \pm 0.99 \pm 0.31) \times 10^{-3}$$

$$\mathcal{A}(\Lambda_c^+ \to \Xi^0 K^+) \propto V_{cs} V_{ud} (E_{\mathbf{B}} + E')$$

Factorization doesn't work.

SU(3) flavor symmetry

Under the $SU(3)_f$ symmetry

$$(\bar{q}_1q_2)(\bar{q}_3c) \sim (\bar{q}^iq_k\bar{q}^j)c$$

$$q_i = (u, d, s)$$
 represent the triplet of 3

To be decomposed as irreducible forms:

$$(\bar{3} \times 3 \times \bar{3})c = (\bar{3} + \bar{3}' + 6 + \bar{15})c$$

$$O_{-(+)} \sim \mathcal{O}_{6(\overline{15})} = \frac{1}{2} (\bar{u}d\bar{s} \mp \bar{s}d\bar{u})c,$$

$$O_{-(+)}^q \sim \mathcal{O}_{6(\overline{15})}^q = \frac{1}{2} (\bar{u}q\bar{q} \mp \bar{q}q\bar{u})c,$$

$$O'_{-(+)} \sim {\mathcal O'}_{6(\overline{15})} = \frac{1}{2} (\bar{u}s\bar{d} \mp \bar{d}s\bar{u})c \,,$$

$$\mathcal{H}_{eff} = \sum_{i=+,-} \frac{G_F}{\sqrt{2}} c_i \left(V_{cs} V_{ud} O_i + V_{cq} V_{uq} O_i^q + V_{cd} V_{us} O_i' \right)$$

$$\mathcal{H}_{eff} = \frac{G_F}{\sqrt{2}} \left[c_- \frac{\epsilon^{ijl}}{2} H(6)_{lk} + c_+ H(\overline{15})_k^{ij} \right] ,$$

$$H(6) = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 2 & -2s_c \\ 0 & -2s_c & 2s_c^2 \end{pmatrix} ,$$

$$H(\overline{15}) = \left(\begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}, \begin{pmatrix} 0 & s_c & 1 \\ s_c & 0 & 0 \\ 1 & 0 & 0 \end{pmatrix}, \begin{pmatrix} 0 & -s_c^2 & -s_c \\ -s_c^2 & 0 & 0 \\ -s_c & 0 & 0 \end{pmatrix} \right).$$

$$\mathcal{O}_{6(\overline{15})} = \frac{1}{2}(\bar{u}d\bar{s} \mp \bar{s}d\bar{u})c$$

 \mathbf{B}_c , an anti-triplet of $\bar{3}$:

$$(ds - sd)c$$
, $(us - su)c$ and $(ud - du)c$
 $(\mathbf{B}_c)_i = (\Xi_c^0, -\Xi_c^+, \Lambda_c^+)$

$$(\mathbf{B}_{n})_{j}^{i} = \begin{pmatrix} \frac{1}{\sqrt{6}}\Lambda^{0} + \frac{1}{\sqrt{2}}\Sigma^{0} & \Sigma^{+} & p \\ \Sigma^{-} & \frac{1}{\sqrt{6}}\Lambda^{0} - \frac{1}{\sqrt{2}}\Sigma^{0} & n \\ \Xi^{-} & \Xi^{0} & -\sqrt{\frac{2}{3}}\Lambda^{0} \end{pmatrix},$$

$$(M)_{j}^{i} = \begin{pmatrix} \frac{1}{\sqrt{2}}(\pi^{0} + c\phi\eta + s\phi\eta') & \pi^{-} & K^{-} \\ \pi^{+} & \frac{-1}{\sqrt{2}}(\pi^{0} - c\phi\eta - s\phi\eta') & \bar{K}^{0} \\ K^{+} & K^{0} & -s\phi\eta + c\phi\eta' \end{pmatrix},$$

 (η, η') , the mixtures of (η_1, η_8)

$$\eta_1 = \sqrt{2/3}\eta_q + \sqrt{1/3}\eta_s, \, \eta_8 = \sqrt{1/3}\eta_q - \sqrt{2/3}\eta_s$$
 $\eta_q = \sqrt{1/2}(u\bar{u} + d\bar{d}) \text{ and } \eta_s = s\bar{s}$

 $\eta - \eta'$ mixing matrix:

$$\begin{pmatrix} \eta \\ \eta' \end{pmatrix} = \begin{pmatrix} \cos \phi - \sin \phi \\ \sin \phi & \cos \phi \end{pmatrix} \begin{pmatrix} \eta_q \\ \eta_s \end{pmatrix}$$
mixing angle $\phi = (39.3 \pm 1.0)^{\circ}$

$$(V)_{j}^{i} = \begin{pmatrix} \frac{1}{\sqrt{2}}(\rho^{0} + \omega) & \rho^{-} & K^{*-} \\ \rho^{+} & \frac{-1}{\sqrt{2}}(\rho^{0} - \omega) & \bar{K}^{*0} \\ K^{*+} & K^{*0} & \phi \end{pmatrix}$$

$$\omega = (u\bar{u} + d\bar{d})/\sqrt{2} \text{ and } \phi = s\bar{s}$$
 mix with

$$\omega_1 = (u\bar{u} + d\bar{d} + s\bar{s})/\sqrt{3}$$

$$\omega_8 = (u\bar{u} + d\bar{d} - 2s\bar{s})/\sqrt{6}$$

$$\mathcal{A}(\mathbf{B}_c \to \mathbf{B}_n M) = \langle \mathbf{B}_n M | \mathcal{H}_{eff} | \mathbf{B}_c \rangle = \frac{G_F}{\sqrt{2}} T(\mathbf{B}_c \to \mathbf{B}_n M)$$

$$T(\mathbf{B}_{c} \to \mathbf{B}_{n}M) = T(\mathcal{O}_{6}) + T(\mathcal{O}_{\overline{15}})$$

$$T(\mathcal{O}_{6}) = a_{1}H_{ij}(6)T^{ik}(\mathbf{B}_{n})_{k}^{l}(M)_{l}^{j} + a_{2}H_{ij}(6)T^{ik}(M)_{k}^{l}(\mathbf{B}_{n})_{l}^{j}$$

$$+ a_{3}H_{ij}(6)(\mathbf{B}_{n})_{k}^{i}(M)_{l}^{j}T^{kl} + hH_{ij}(6)T^{ik}(\mathbf{B}_{n})_{k}^{j}(M)_{l}^{l},$$

$$T(\mathcal{O}_{\overline{15}}) = a_{4}H_{li}^{k}(\overline{15})(\mathbf{B}_{c})^{j}(M)_{j}^{i}(\mathbf{B}_{n})_{k}^{l} + a_{5}(\mathbf{B}_{n})_{j}^{i}(M)_{l}^{l}H(\overline{15})_{l}^{jk}(\mathbf{B}_{c})_{k}$$

$$+ a_{6}(\mathbf{B}_{n})_{l}^{k}(M)_{j}^{i}H(\overline{15})_{l}^{jl}(\mathbf{B}_{c})_{k} + a_{7}(\mathbf{B}_{n})_{l}^{l}(M)_{j}^{i}H(\overline{15})_{l}^{jk}(\mathbf{B}_{c})_{k}$$

$$+ h'H_{i}^{jk}(\overline{15})(\mathbf{B}_{n})_{k}^{i}(M)_{l}^{l}(\mathbf{B}_{c})_{i},$$

$$T_{ij} \equiv (\mathbf{B}_c)_k \epsilon^{ijk}$$

$$(M)_l^l = \sqrt{3}\eta_1$$

Λ_c^+	T-amp
$\Sigma^0\pi^+$	$\left -\sqrt{2}(a_1-a_2-a_3-\frac{a_5-a_7}{2})\right $
$\Sigma^+\pi^0$	$\sqrt{2}(a_1-a_2-a_3-\frac{a_5-a_7}{2})$
$\Sigma^+\eta$	$\left \sqrt{2}c\phi(-a_1-a_2+a_3-2h)\right $
	$\left +rac{a_5+a_7+2h'}{2} ight)$
	$\left +s\phi(-a_4+2h-h') \right $
$\sum +\eta'$	$\left \frac{\sqrt{2}s\phi}{2}(-a_1-a_2+a_3-2h) \right $
	$\left +rac{a_5+a_7+2h'}{2} ight)$
	$-c\phi(-a_4+2h-h')$
$\Xi^0 K^+$	$\left -2(a_2-rac{a_4+a_7}{2}) ight $
$p\bar{K}^0$	$\left -2(a_1-rac{a_5+a_6}{2}) ight $
$\Lambda^0\pi^+$	$\left -\sqrt{rac{2}{3}}(a_1+a_2+a_3) \right $
	$-rac{a_5-2a_6+a_7}{2})$

$$\begin{array}{|c|c|c|c|}\hline \Sigma^{+}K^{0} & -2(a_{1}-a_{3}-\frac{a_{4}-a_{5}}{2})s_{c} \\ \Sigma^{0}K^{+} & -\sqrt{2}(a_{1}-a_{3}-\frac{a_{4}+a_{5}}{2})s_{c} \\ p\pi^{0} & -\sqrt{2}(a_{2}+a_{3}-\frac{a_{6}-a_{7}}{2})s_{c} \\ p\eta & [\sqrt{2}c\phi(a_{2}-a_{3}+2h \\ & +\frac{a_{6}-a_{7}-2h'}{2}) \\ & +2s\phi(-a_{1}-h \\ & +\frac{a_{4}+a_{5}+a_{6}+h'}{2})]s_{c} \\ p\eta' & [\sqrt{2}s\phi(a_{2}-a_{3}+2h \\ & +\frac{a_{6}-a_{7}-2h'}{2}) \\ & -2c\psi(-a_{1}-h \\ & +\frac{a_{4}+a_{5}+a_{6}+h'}{2})]s_{c} \\ n\pi^{+} & -2(a_{2}+a_{3}-\frac{a_{4}+a_{7}}{2})s_{c} \\ \Lambda^{0}K^{+} & -\sqrt{\frac{2}{3}}(a_{1}-2a_{2}+a_{3} \\ & -\frac{3a_{4}-a_{5}+2a_{6}+2a_{7}}{2})s_{c} \end{array}$$

$$pK^0$$
 $2(a_3 - \frac{a_4 + a_6}{2})s_c^2$ nK^+ $-2(a_3 + \frac{a_4 + a_6}{2})s_c^2$

TABLE I. The data of the $\mathbf{B}_c \to \mathbf{B}_n M$ decays.

Branching ratios	Data	Branching ratios	Data	
$10^2 \mathcal{B}(\Lambda_c^+ \to p\bar{K}^0)$	$\boxed{3.16 \pm 0.16}$	$10^4 \mathcal{B}(\Lambda_c^+ \to \Lambda K^+)$	6.1 ± 1.2	
$10^2 \mathcal{B}(\Lambda_c^+ \to \Lambda \pi^+)$	$\left 1.30 \pm 0.07\right $	$10^4 \mathcal{B}(\Lambda_c^+ \to \Sigma^0 K^+)$	5.2 ± 0.8	
$10^2 \mathcal{B}(\Lambda_c^+ \to \Sigma^+ \pi^0)$	$\left 1.24\pm0.10\right $	$10^4 \mathcal{B}(\Lambda_c^+ \to \Sigma^+ K^0)$		
$10^2 \mathcal{B}(\Lambda_c^+ \to \Sigma^0 \pi^+)$	$\left 1.29 \pm 0.07\right $	$10^4 \mathcal{B}(\Lambda_c^+ \to p\eta)$	12.4 ± 3.0	
$\left 10^2 \mathcal{B}(\Lambda_c^+ \to \Xi^0 K^+) \right $	0.59 ± 0.09	$10^4 \mathcal{B}(\Lambda_c^+ \to p \eta')$		
$10^2 \mathcal{B}(\Lambda_c^+ \to \Sigma^+ \eta)$	0.70 ± 0.23	$10^4 \mathcal{B}(\Lambda_c^+ \to p\pi^0)$	$0.8 \pm 1.4 \ (< 0.27)$	
$10^2 \mathcal{B}(\Lambda_c^+ \to \Sigma^+ \eta')$	observed	$10^4 \mathcal{B}(\Lambda_c^+ \to n\pi^+)$		
$10^2\mathcal{B}(\Xi_c^0\to\Xi^-\pi^+)$	observed	$\left \mathcal{R}_1(\Xi_c^0)\equivrac{\mathcal{B}(\Xi_c^0 ightarrow\Xi^-K^+)}{\mathcal{B}(\Xi_c^0 ightarrow\Xi^-\pi^+)} ight $	$(0.56 \pm 0.12)s_c^2$	
		$\mathcal{R}_2(\Xi_c^0) \equiv rac{\mathcal{B}(\Xi_c^0 ightarrow \Lambda^0 ar{K}^0)}{\mathcal{B}(\Xi_c^0 ightarrow \Xi^- \pi^+)}$	0.420 ± 0.056	

$$\mathcal{H}_{eff} \propto c_{-}H(6) + c_{+}H(\overline{15})$$

$$(c_+, c_-) = (0.76, 1.78)$$

$$(c_+/c_-)^2 \simeq 0.18$$
, neglecting $H(\overline{15})$

$$a_1, a_2 e^{i\delta_{a_2}}, a_3 e^{i\delta_{a_3}}, he^{i\delta_h}$$
.

$$\chi^2 = \sum_{i} \left(\frac{\mathcal{B}_{th}^i - \mathcal{B}_{ex}^i}{\sigma_{ex}^i} \right)^2 + \sum_{j} \left(\frac{\mathcal{R}_{th}^j - \mathcal{R}_{ex}^j}{\sigma_{ex}^j} \right)^2,$$

$$(a_1, a_2, a_3, h) = (0.244 \pm 0.006, 0.115 \pm 0.014, 0.088 \pm 0.019, 0.105 \pm 0.073) \,\text{GeV}^3,$$

$$(\delta_{a_2}, \delta_{a_3}, \delta_h) = (78.1 \pm 7.1, 35.1 \pm 8.7, 10.2 \pm 29.6)^{\circ},$$

$$\chi^2/d.o.f = 5.32/3 = 1.77$$
,

(Ratios of) Branching ratios	$SU(3)_f$	symmetry	Data
$10^2 \mathcal{B}(\Lambda_c^+ \to p\bar{K}^0)$	3.3 ± 0.2	2.72 - 3.60	3.16 ± 0.16
$10^2 \mathcal{B}(\Lambda_c^+ \to \Lambda^0 \pi^+)$	1.3 ± 0.2	1.30 ± 0.17	1.30 ± 0.07
$10^2 \mathcal{B}(\Lambda_c^+ \to \Sigma^0 \pi^+)$	1.3 ± 0.2	1.27 ± 0.17	1.29 ± 0.07
$10^2 \mathcal{B}(\Lambda_c^+ \to \Sigma^+ \pi^0)$	1.3 ± 0.2	1.27 ± 0.17	1.24 ± 0.10
$10^2 \mathcal{B}(\Lambda_c^+ \to \Xi^0 K^+)$	0.5 ± 0.1	0.50 ± 0.12	0.59 ± 0.09
$10^2 \mathcal{B}(\Lambda_c^+ \to \Sigma^+ \eta)$	$0.7^{+0.4}_{-0.3}$		0.70 ± 0.23
$10^2 \mathcal{B}(\Lambda_c^+ \to \Sigma^+ \eta')$	$1.0^{+1.6}_{-0.8}$		

(Ratios of) Branching ratios	$SU(3)_f$	symmetry	Data
$10^4 \mathcal{B}(\Lambda_c^+ \to p\pi^0)$	5.7 ± 1.5		$0.8 \pm 1.4 \ (< 0.27)$
$10^4 \mathcal{B}(\Lambda_c^+ \to n\pi^+)$	$\boxed{11.3 \pm 2.9}$		
$10^4 \mathcal{B}(\Lambda_c^+ \to \Lambda^0 K^+)$	4.6 ± 0.9		6.1 ± 1.2
$10^4 \mathcal{B}(\Lambda_c^+ \to \Sigma^0 K^+)$	4.0 ± 0.8		5.2 ± 0.8
$10^4 \mathcal{B}(\Lambda_c^+ \to \Sigma^+ K^0)$	8.0 ± 1.6		
$10^4 \mathcal{B}(\Lambda_c^+ \to p\eta)$	$12.5_{-3.6}^{+3.8}$		12.4 ± 3.0
$10^4 \mathcal{B}(\Lambda_c^+ \to p \eta')$	$12.2^{+14.3}_{-8.7}$		

(Ratios of) Branching ratios	$SU(3)_f$	symmetry	Data
$10^4 \mathcal{B}(\Xi_c^0 \to \Xi^- K^+)$	7.6 ± 0.4		
$10^2 \mathcal{B}(\Xi_c^0 \to \Lambda^0 \bar{K}^0)$	$0.83 \pm 0.09 \ 0$	0.94 ± 0.16	
$10^2 \mathcal{B}(\Xi_c^0 \to \Xi^- \pi^+)$	1.57 ± 0.07 2	2.24 ± 0.34	
$\mathcal{R}_1(\Xi_c^0)\equivrac{\mathcal{B}(\Xi_c^0 ightarrow\Xi^-K^+)}{\mathcal{B}(\Xi_c^0 ightarrow\Xi^-\pi^+)}$	$0.96s_c^2$		$(0.56 \pm 0.12)s_c^2$
$\mathcal{R}_2(\Xi_c^0)\equivrac{\mathcal{B}(\Xi_c^0 ightarrow\Lambda^0ar{K}^0)}{\mathcal{B}(\Xi_c^0 ightarrow\Xi^-\pi^+)}$	0.53 ± 0.06		0.42 ± 0.06

$$\mathcal{B}(\Lambda_c^+ \to p\pi^0) \simeq \left(\frac{a_2}{\bar{a}_2} \frac{f_\pi}{2f_K} \frac{V_{cd} V_{ud}}{V_{cs} V_{ud}}\right)^2 \mathcal{B}(\Lambda_c^+ \to p\bar{K}^0)$$

$$= (5.5 \pm 0.3) \times 10^{-4} ,$$

$$\mathcal{B}(\Xi_c^0 \to \Xi^- K^+) \simeq \left(\frac{a_1}{\bar{a}_1} \frac{f_K}{f_\pi} \frac{V_{cs} V_{us}}{V_{cs} V_{ud}}\right)^2 \mathcal{B}(\Xi_c^0 \to \Xi^- \pi^+)$$

$$\simeq 1.4s_c^2 ,$$

Diagrammatic approach

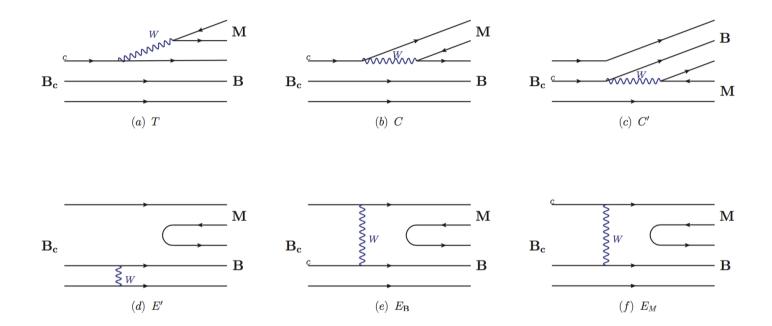
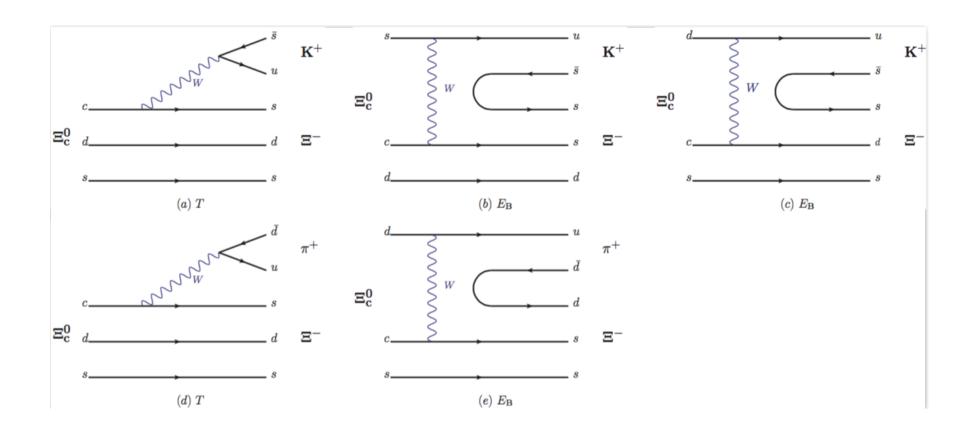


FIG. 1. Topological diagrams for the $\mathbf{B}_c \to \mathbf{B}M$ decays.

$$\mathcal{A}(\Lambda_c^+ \to p\pi^0) \propto V_{cd} V_{ud} \sqrt{\frac{1}{2}} (-C - C' - E_M + E_{\mathbf{B}} + E')$$

$$\mathcal{A}(\Xi_c^0 \to \Xi^- K^+) \propto V_{cs} V_{us} (T + E_{\mathbf{B}}) + V_{cd} V_{ud} E_{\mathbf{B}} = V_{cs} V_{us} T$$

$$\mathcal{A}(\Xi_c^0 \to \Xi^- \pi^+) \propto V_{cs} V_{ud} (T + E_{\mathbf{B}})$$



$$\mathcal{A}(\Xi_c^0 \to \Xi^- K^+) \propto V_{cs} V_{us} (T + E_{\mathbf{B}}) + V_{cd} V_{ud} E_{\mathbf{B}} = V_{cs} V_{us} T$$

$$\mathcal{A}(\Xi_c^0 \to \Xi^- \pi^+) \propto V_{cs} V_{ud} (T + E_{\mathbf{B}})$$

$$\mathcal{B}(\Lambda_c^+ \to p\pi^0) = (0.8 \pm 0.7) \times 10^{-4}$$

$$\mathcal{R}_1(\Xi_c^0) \equiv \frac{\mathcal{B}(\Xi_c^0 \to \Xi^- K^+)}{\mathcal{B}(\Xi_c^0 \to \Xi^- \pi^+)} = (0.56 \pm 0.12) s_c^2$$

$$\mathcal{B}(\Xi_c^0 \to \Xi^- \pi^+) = (1.91 \pm 0.17)\%$$

$$\mathcal{B}(\Xi_c^0 \to \Xi^- \pi^+) = (1.80 \pm 0.50 \pm 0.14)\%, \text{ BELLE}$$

$$T(\mathbf{B}_{c} \to \mathbf{B}_{n}MM') =$$

$$a_{1}(\bar{\mathbf{B}}_{n})_{i}^{k}(M)_{l}^{m}(M')_{m}^{l}H(6)_{jk}T^{ij} + a_{2}(\bar{\mathbf{B}}_{n})_{i}^{k}(M)_{j}^{m}(M')_{m}^{l}H(6)_{kl}T^{ij}$$

$$+ a_{3}(\bar{\mathbf{B}}_{n})_{i}^{k}(M)_{k}^{m}(M')_{m}^{l}H(6)_{jl}T^{ij} + a_{4}(\bar{\mathbf{B}}_{n})_{i}^{k}(M)_{j}^{l}(M')_{k}^{m}H(6)_{lm}T^{ij}$$

$$+ a_{5}(\bar{\mathbf{B}}_{n})_{k}^{l}(M)_{j}^{m}(M')_{m}^{k}H(6)_{il}T^{ij} + a_{6}(\bar{\mathbf{B}}_{n})_{k}^{l}(M)_{j}^{m}(M')_{l}^{k}H(6)_{im}T^{ij},$$

L between MM':

S-wave MM'-pair (L=0), dominant

P-wave one (L=1), neglected

$$\mathcal{A}(\mathbf{B}_c \to \mathbf{B}_n V) = \langle \mathbf{B}_n V | \mathcal{H}_{eff} | \mathbf{B}_c \rangle = \frac{G_F}{\sqrt{2}} T(\mathbf{B}_c \to \mathbf{B}_n V)$$

$$T(\mathbf{B}_{c} \to \mathbf{B}_{n}V) = T(\mathcal{O}_{6}) + T(\mathcal{O}_{\overline{15}}),$$

$$T(\mathcal{O}_{6}) = \bar{a}_{1}H^{ij}(6)T_{ik}(\mathbf{B}_{n})_{l}^{k}(V)_{j}^{l} + \bar{a}_{2}H^{ij}(6)T_{ik}(V)_{l}^{k}(\mathbf{B}_{n})_{j}^{l}$$

$$+ \bar{a}_{3}H^{ij}(6)(\mathbf{B}_{n})_{i}^{k}(V)_{j}^{l}T_{kl} + \bar{h}H^{ij}(6)T_{ik}(\mathbf{B}_{n})_{j}^{k}(V)_{l}^{l},$$

$$T(\mathcal{O}_{\overline{15}}) = \bar{a}_{4}H_{jk}^{i}(\overline{15})(V)_{l}^{j}(\mathbf{B}_{n})_{i}^{k}(\mathbf{B}_{c})^{l} + \bar{a}_{5}H(\overline{15})_{jk}^{i}(\mathbf{B}_{c})^{j}(\mathbf{B}_{n})_{l}^{k}(V)_{i}^{l}$$

$$+ \bar{a}_{6}H(\overline{15})_{jk}^{i}(\mathbf{B}_{n})_{l}^{j}(V)_{i}^{k}(\mathbf{B}_{c})^{l} + \bar{a}_{7}H(\overline{15})_{jk}^{i}(\mathbf{B}_{c})^{j}(V)_{l}^{k}(\mathbf{B}_{n})_{i}^{l}$$

$$+ \bar{h}'H_{ik}^{i}(\overline{15})(\mathbf{B}_{n})_{i}^{k}(V)_{l}^{l}(\mathbf{B}_{c})^{j},$$

$$(V)_l^l = \sqrt{2}\omega + \phi = \sqrt{3}\omega_1$$

Λ_c^+	$\operatorname{CF} T ext{-amp}$
$\Sigma^0 ho^+$	$-\sqrt{2}(\bar{a}_1 - \bar{a}_2 - \bar{a}_3 - \frac{\bar{a}_5 - \bar{a}_7}{2})$
$\Sigma^+ ho^0$	$\sqrt{2}(\bar{a}_1 - \bar{a}_2 - \bar{a}_3 - \frac{\bar{a}_5 - \bar{a}_7}{2})$
$\Sigma^+\omega$	$\left \sqrt{2}(-\bar{a}_1-\bar{a}_2+\bar{a}_3-2\bar{h}\right $
	$\left +rac{ar{a}_5+ar{a}_7+2ar{h}'}{2} ight)$
$\Sigma^+\phi$	$\left ar{a}_4-2ar{h}+ar{h}' ight $
$\Xi^0 K^{*+}$	$\left -2(ar{a}_2-rac{ar{a}_4+ar{a}_7}{2}) ight $
$par{K}^{*0}$	$\left -2(ar{a}_1-rac{ar{a}_5+ar{a}_6}{2}) ight $
$\Lambda^0 ho^+$	$-\sqrt{rac{2}{3}}(ar{a}_1+ar{a}_2+ar{a}_3$
	$\left -rac{ar{a}_5-2ar{a}_6+ar{a}_7}{2} ight $

Λ_c^+	$SCS\ T$ -amp
$\Sigma^+ K^{*0}$	$-2(\bar{a}_1 - \bar{a}_3 - \frac{\bar{a}_4 - \bar{a}_5}{2})s_c$
$\Sigma^0 K^{*+}$	$\left -\sqrt{2}(\bar{a}_1 - \bar{a}_3 - \frac{\bar{a}_4 + \bar{a}_5}{2})s_c \right $
$p ho^0$	$\left -\sqrt{2}(\bar{a}_2 + \bar{a}_3 - \frac{\bar{a}_6 - \bar{a}_7}{2})s_c \right $
$p\omega$	$\sqrt{2}(ar{a}_2-ar{a}_3+2ar{h}$
	$\left +rac{ar{a}_6-ar{a}_7-2ar{h}'}{2} ight)s_c$
$p\phi$	$\left -2(-ar{a}_1 - ar{h} ight $
	$\left +rac{ar{a}_4+ar{a}_5+ar{a}_6+ar{h}'}{2} ight)\!s_c$
$n ho^+$	$\left -2(\bar{a}_2 + \bar{a}_3 - \frac{\bar{a}_4 + \bar{a}_7}{2})s_c \right $
$\Lambda^0 K^{*+}$	$\left -\sqrt{rac{2}{3}}(ar{a}_1 - 2ar{a}_2 + ar{a}_3) ight $
	$\left[-rac{3ar{a}_4 - ar{a}_5 + 2ar{a}_6 + 2ar{a}_7}{2})s_c ight.$

Λ_c^+	DCS T-amp
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	$2(ar{a}_3-rac{ar{a}_4+ar{a}_6}{2})s_c^2$
nK^{*+}	$\begin{vmatrix} 2(\bar{a}_3 - \frac{\bar{a}_4 + \bar{a}_6}{2})s_c^2 \\ -2(\bar{a}_3 + \frac{\bar{a}_4 + \bar{a}_6}{2})s_c^2 \end{vmatrix}$

$$\Sigma^{+} \eta = \sqrt{2}c\phi(-a_{1} - a_{2} + a_{3} - 2h + \frac{a_{5} + a_{7} + 2h'}{2}) + s\phi(-a_{4} + 2h - h')$$

$$\Sigma^{+} \eta' = \frac{\sqrt{2}s\phi}{2}(-a_{1} - a_{2} + a_{3} - 2h + \frac{a_{5} + a_{7} + 2h'}{2}) - c\phi(-a_{4} + 2h - h')$$

$$\bar{a}_1, \bar{a}_2 e^{i\delta_{\bar{a}_2}}, \bar{a}_3 e^{i\delta_{\bar{a}_3}}, \bar{h}e^{i\delta_{\bar{h}}},$$

$$\chi^2 = \sum_{i} \left(\frac{\mathcal{B}_{th}^i - \mathcal{B}_{ex}^i}{\sigma_{ex}^i} \right)^2 + \sum_{j} \left(\frac{\mathcal{R}_{th}^j - \mathcal{R}_{ex}^j}{\sigma_{ex}^j} \right)^2,$$

(Ratio of) Branching fraction	Data
$10^2 \mathcal{B}(\Lambda_c^+ \to p\bar{K}^{*0})$	$1.94 \pm 0.27 \; [1]$
$10^2 \mathcal{B}(\Lambda_c^+ \to \Sigma^+ \omega)$	$1.69 \pm 0.21 \; [1]$
$10^3 \mathcal{B}(\Lambda_c^+ \to \Sigma^+ \phi)$	$3.8 \pm 0.6 \; [1]$
$\mathcal{R}(\Lambda_c^+) = rac{\mathcal{B}(\Lambda_c^+ o \Sigma^+ ho^0)}{\mathcal{B}(\Lambda_c^+ o \Sigma^+ \omega)}$	$0.3 \pm 0.2 \; [32]$
$10^3 \mathcal{B}(\Lambda_c^+ \to \Sigma^+ K^{*0})$	$3.4 \pm 1.0 \; [1]$
$10^4 \mathcal{B}(\Lambda_c^+ \to p\omega)$	$9.4 \pm 3.9 \; [33]$
$10^4 \mathcal{B}(\Lambda_c^+ \to p\phi)$	$10.6 \pm 1.4 \; [1]$
$10^4 \mathcal{B}(\Xi_c^0 \to \Lambda^0 \phi)$	$6.1 \pm 2.2 [1, 3]$
$\mathcal{R}_1(\Xi_c^+) = rac{\mathcal{B}(\Xi_c^+ o par{K}^{*0})}{\mathcal{B}(\Xi_c^+ o \Sigma^+ ar{K}^{*0})}$	$(2.8 \pm 1.0)s_c^2$ [1]
$\mathcal{R}_2(\Xi_c^+) = rac{\mathcal{B}(\Xi_c^+ o \Sigma^+ \phi)}{\mathcal{B}(\Xi_c^+ o \Sigma^+ ar{K}^{*0})}$	$(1.7 \pm 1.2)s_c^2 [1, 29]$

(Ratio of) Branching fraction	This work	Data
$10^2 \mathcal{B}(\Lambda_c^+ \to p\bar{K}^{*0})$	1.9 ± 0.3	1.94 ± 0.27 [1]
$10^2 \mathcal{B}(\Lambda_c^+ \to \Sigma^+ \omega)$	1.6 ± 0.7	1.69 ± 0.21 [1]
$10^3 \mathcal{B}(\Lambda_c^+ \to \Sigma^+ \phi)$	3.9 ± 0.6	$3.8 \pm 0.6 \; [1]$
$\mathcal{R}(\Lambda_c^+) = rac{\mathcal{B}(\Lambda_c^+ ightarrow \Sigma^+ ho^0)}{\mathcal{B}(\Lambda_c^+ ightarrow \Sigma^+ \omega)}$	0.4 ± 0.3	$0.3 \pm 0.2 \; [32]$
$10^3 \mathcal{B}(\Lambda_c^+ \to \Sigma^+ K^{*0})$	2.3 ± 0.6	$3.4 \pm 1.0 \; [1]$
$10^4 \mathcal{B}(\Lambda_c^+ \to p\omega)$	11.4 ± 5.4	$9.4 \pm 3.9 \; [33]$
$10^4 \mathcal{B}(\Lambda_c^+ \to p\phi)$	10.4 ± 2.1	$10.6 \pm 1.4 \; [1]$
$10^4 \mathcal{B}(\Xi_c^0 \to \Lambda^0 \phi)$	8.4 ± 3.9	$6.1 \pm 2.2 [1, 3]$
$\mathcal{R}_1(\Xi_c^+) = \frac{\mathcal{B}(\Xi_c^+ \to p\bar{K}^{*0})}{\mathcal{B}(\Xi_c^+ \to \Sigma^+ \bar{K}^{*0})}$	$(1.6 \pm 0.2)s_c^2$	$(2.8 \pm 1.0)s_c^2$ [1]
$\mathcal{R}_2(\Xi_c^+) = rac{\mathcal{B}(\Xi_c^+ o \Sigma^+ \phi)}{\mathcal{B}(\Xi_c^+ o \Sigma^+ ar{K}^{*0})}$	$0.4 \pm 0.1 s_c^2$	$(1.7 \pm 1.2)s_c^2 [1, 29]$

$$(\bar{a}_1, \bar{a}_2, \bar{a}_3, \bar{h}) = (0.22 \pm 0.02, 0.23 \pm 0.04, 0.39 \pm 0.05, 0.16 \pm 0.01) \,\text{GeV}^3$$
,
 $(\delta_{\bar{a}_2}, \delta_{\bar{a}_3}, \delta_{\bar{h}}) = (-85.5 \pm 13.0, 78.4 \pm 8.8, 99.3 \pm 7.7)^{\circ}$,
 $\chi^2/n.d.f = 6.3/3 = 2.1$,

Λ_c^+	our results	Λ_c^+	our results	Λ_c^+	our results
$10^3 \mathcal{B}_{\Sigma^0 \rho^+}$	$\boxed{6.1 \pm 4.6}$	$10^4 \mathcal{B}_{p ho^0}$	3.5 ± 2.9	$10^4 \mathcal{B}_{pK^{*0}}$	$\boxed{1.6\pm0.5}$
$10^3 \mathcal{B}_{\Sigma^+ ho^0}$	$\left 6.1 \pm 4.6 \right $	$10^4 \mathcal{B}_{n ho^+}$	7.0 ± 5.8	$10^4 \mathcal{B}_{nK^{*+}}$	1.6 ± 0.5
$10^3 \mathcal{B}_{\Xi^0 K^{*+}}$	$igg 8.7 \pm 2.7$	$10^3 \mathcal{B}_{\Sigma^0 K^{*+}}$	$\left \begin{array}{c} 1.2\pm0.3 \end{array}\right $		
$10^3 \mathcal{B}_{\Lambda^0 ho^+}$	$\left 7.4 \pm 3.4 \right $	$10^3 \mathcal{B}_{\Lambda^0 K^{*+}}$	2.0 ± 0.5		

Tested by data:

$$\mathcal{B}(\Lambda_c^+ \to \Sigma^+ \rho^0, \Lambda^0 \rho^+) = (0.61 \pm 0.46, 0.74 \pm 0.34)\%,$$

$$\mathcal{B}_{ex}(\Lambda_c^+ \to \Sigma^+ \rho^0, \Lambda^0 \rho^+) < (1.7, 6)\%,$$

$$\mathcal{B}(\Lambda_c^+ \to \Sigma^+ \rho^0, \rho^0 \to \pi^+ \pi^-) = (6.1 \pm 4.6) \times 10^{-3},$$

$$\mathcal{B}(\Lambda_c^+ \to \Sigma^0 \rho^+, \rho^+ \to \pi^+ \pi^0) = (6.1 \pm 4.6) \times 10^{-3}$$

$$\mathcal{B}(\Lambda_c^+ \to \Lambda^0 \rho^+, \rho^+ \to \pi^+ \pi^0) = (7.4 \pm 3.4) \times 10^{-3}$$

total
$$\mathbf{B}_{ex} = (4.42 \pm 0.28, 2.2 \pm 0.8, 7.0 \pm 0.4) \times 10^{-2}$$

 $\Rightarrow V \to MM'$, minor.

isospin symmetry

$$\mathcal{B}(\Lambda_c^+ \to \Sigma^0 \rho^+, \Sigma^+ \rho^0) = (6.1 \pm 4.6) \times 10^{-3},$$

$$\mathcal{B}(\Lambda_c^+ \to \Sigma^+ K^{*0}) = 2\mathcal{B}(\Lambda_c^+ \to \Sigma^0 K^{*+}) = (2.3 \pm 0.6) \times 10^{-3},$$

$$\mathcal{B}(\Lambda_c^+ \to p \rho^0) = \frac{1}{2} \mathcal{B}(\Lambda_c^+ \to n \rho^+) = (3.5 \pm 2.9) \times 10^{-4},$$

$$\mathcal{B}(\Lambda_c^+ \to n K^{*+}, p K^{*0}) = (1.6 \pm 0.5) \times 10^{-4},$$

Overestimation?

$$\begin{split} \frac{1}{\sqrt{2}} T(\Lambda_c^+ \to p \bar{K}^{*0}) - \frac{1}{s_c} T(\Lambda_c^+ \to p \rho^0) &= T(\Lambda_c^+ \to \Sigma^0 \rho^+) \,, \\ \frac{1}{\sqrt{2}} T(\Lambda_c^+ \to p \bar{K}^{*0}) + \frac{1}{s_c} T(\Lambda_c^+ \to p \rho^0) &= \sqrt{3} T(\Lambda_c^+ \to \Lambda^0 \rho^+) \,, \\ \mathcal{B}(\Lambda_c^+ \to p \rho^0) &\\ \simeq \frac{s_c^2}{2} [3.6 \mathcal{B}(\Lambda_c^+ \to \Lambda^0 \rho^+) + 1.3 \mathcal{B}(\Lambda_c^+ \to \Sigma^0 \rho^+) - 1.1 \mathcal{B}(\Lambda_c^+ \to p \bar{K}^{*0})] \,, \end{split}$$

$$\mathcal{B}(\Lambda_c^+ \to \Xi^0 K^{*+}, \Sigma^0 K^{*+}, \Lambda^0 K^{*+})$$

= $(8.7 \pm 2.7, 1.2 \pm 0.3, 2.0 \pm 0.5) \times 10^{-3},$
compatible with $\mathbf{B}(\Lambda_c^+ \to \mathbf{B}_n M).$

$$\mathcal{B}(\Xi_c^+ \to p\phi) = (1.5 \pm 0.7) \times 10^{-4}$$

$$\mathcal{B}(\Xi_c^+ \to p\phi)/\mathcal{B}(\Xi_c^+ \to pK^-\pi^+)$$

$$= (19.8 \pm 0.7 \pm 0.9 \pm 0.2) \times 10^{-3} \text{ [LHCb]}$$

$$\mathcal{B}(\Xi_c^+ \to pK^-\pi^+) = (0.8 \pm 0.4)\%$$

Summary

- Within the framework of the $SU(3)_f$ symmetry, one can study $\mathbf{B}_c \to \mathbf{B}_n M(M'), \mathbf{B}_n V$.
- $\mathbf{B}(\mathbf{B}_c \to \mathbf{B}_n V)$ are accessible to the BESIII, BELLEII and LHCb measurements.

Thank You