

Hyperon physics at a charm factory Andrzej Kupsc

nature physics

LETTERS https://doi.org/10.1038/s41567-019-0494-8

Polarization and entanglement in baryonantibaryon pair production in electron-positron annihilation **BESI** arXiv:1808.08917

The BESIII Collaboration*

 $e^+e^- \rightarrow J/\psi \rightarrow \Lambda \overline{\Lambda}$ Online: May 6th

Prospects for hyperon physics at electron-positron colliderHyperon polarization

- Determination of hyperon decay parameters
- **CP** tests

E.Perotti,G.Fäldt,AK,S.Leupold,JJ.Song PRD99 (2019)056008, P.Adlarson,AK

Hyperons WS Fudan U. 7-8 July 2019

Picture:Piotr Kupsc

 $e^+e^- \rightarrow J/\psi \rightarrow \Xi\overline{\Xi}$

 $e^+e^- \rightarrow \gamma^* \rightarrow B\overline{B} \text{ (spin 1/2)}$

F₁ (Dirac) and F₂ (Pauli) Form Factors

Sachs Form Factors (FFs) ⇔ helicity amplitudes:

 $G_M(s) = F_1(s) + F_2(s), \quad G_E(s) = F_1(s) + \tau F_2(s)$ helicity non-flip helicity flip

$$\tau = \frac{s}{4M_B^2}$$

$$e^+e^- \rightarrow \mu^+\mu^-$$

At high energies annihilating e+e- have opposite helicities.

 $F_1(0) = 1, \ F_2(0) = a_\mu$

 $\frac{d\sigma}{d\Omega} = \frac{\alpha^2}{4s}(1 + \cos^2\theta)$

 γ^* has ± 1 helicity

$$\rho_1(\theta) = \begin{pmatrix} \frac{1+\cos^2\theta}{2} & -\frac{\cos\theta\sin\theta}{\sqrt{2}} & \frac{\sin^2\theta}{2} \\ -\frac{\cos\theta\sin\theta}{\sqrt{2}} & \sin^2\theta & \frac{\cos\theta\sin\theta}{\sqrt{2}} \\ \frac{\sin^2\theta}{2} & \frac{\cos\theta\sin\theta}{\sqrt{2}} & \frac{1+\cos^2\theta}{2} \end{pmatrix}$$

$$e^+e^- \rightarrow \gamma^* \rightarrow B\overline{B}$$

For spin $\frac{1}{2}$ *B* production two complex FFs: $G_M(s)$, $G_E(s)$

 \Rightarrow process described by three parameters at fixed \sqrt{s} :

- \Box cross section (σ)
- **G** FFs ratio R or angular distribution parameter α_{ψ}
- \Box relative phase between FFs ($\Delta \Phi$)

$$R = \left| \frac{G_E}{G_M} \right| \quad \left(\alpha_{\psi} = \frac{\tau - R^2}{\tau + R^2} \right) \qquad G_E = R G_M e^{i\Delta\Phi}$$
$$\tau = \frac{s}{4M^2}$$

Angular distribution:

$$\frac{d\Gamma}{d\Omega} \propto 1 + \boldsymbol{\alpha}_{\boldsymbol{\psi}} \cos^2 \theta \quad -1 \leq \boldsymbol{\alpha}_{\boldsymbol{\psi}} \leq 1$$

 $4/1/1_{0}$

Phase $\Delta \Phi$ expected/predicted for continuum but neglected/not expected for the decays

 $e^+e^- \rightarrow B_1\overline{B}_2$

Baryon-antibaryon spin density matrix $e^+e^- \rightarrow B_1\overline{B}_2$

General two spin ¹/₂ **particle state**:

$$\rho_{1/2,\overline{1/2}} = \frac{1}{4} \sum_{\mu \overline{\nu}} C_{\mu \overline{\nu}} \sigma_{\mu}^{B_1} \otimes \sigma_{\overline{\nu}}^{\overline{B}_2}$$

$$\beta_{\psi} = \sqrt{1 - \alpha_{\psi}^2} \sin(\Delta \Phi) \quad \gamma_{\psi} = \sqrt{1 - \alpha_{\psi}^2} \cos(\Delta \Phi)$$

E.Perotti, G.Faldt, AK, S.Leupold, JJ.Song PRD99 (2019)056008

Polarization of daughter baryons:

$$\mathbf{Y} \rightarrow B\boldsymbol{\pi}$$
$$\mathbf{P}_{B} = \frac{(\alpha + \mathbf{P}_{Y} \cdot \widehat{\mathbf{n}})\widehat{\mathbf{n}} + \beta(\mathbf{P}_{Y} \times \widehat{\mathbf{n}}) + \gamma\widehat{\mathbf{n}} \times (\mathbf{P}_{Y} \times \widehat{\mathbf{n}})}{1 + \alpha\mathbf{P}_{Y} \cdot \widehat{\mathbf{n}}} \qquad \text{PDG}$$

$$\mathbf{P}_Y = \mathbf{0} \; \Rightarrow \; \mathbf{P}_B = \alpha \; \widehat{\mathbf{n}}$$

Density matrix for a spin ½ particle in the rest frame: $\rho_{1/2} = \frac{1}{2} \sum_{\mu=0}^{3} I_{\mu} \sigma_{\mu} = \frac{1}{2} I_{0} \begin{pmatrix} 1 + P_{z} & P_{x} - iP_{y} \\ P_{x} + iP_{y} & 1 - P_{z} \end{pmatrix}$

$$\sigma_0 = \mathbf{1}_2, \sigma_1 = \sigma_{\chi}, \sigma_2 = \sigma_{\chi}, \sigma_3 = \sigma_z$$

Transformation of base matrices:

$$\frac{1}{2}^{+} \rightarrow \frac{1}{2}^{+} + 0^{-} e.g. \Lambda \rightarrow p + \pi^{-}$$

Decay matrices

$$\sigma_{\mu} \to \sum_{\nu=0}^{3} a_{\mu,\nu} \sigma_{\nu}^{d}$$

 4×4 decay matrix: $a_{\mu,\nu}$

E.Perotti, G.Faldt, AK, S.Leupold, JJ.Song PRD99 (2019)056008

Picture:Wolfgang Gradl

Hyperon-hyperon pair production at BESIII

Thresholds:

- $\Lambda\overline{\Lambda}$: 2.231 GeV $\Xi^{0}\overline{\Xi}^{0}$ 2.630 GeV
- $\Lambda \overline{\Sigma}^0$ 2.308 GeV

 $\Sigma^+\overline{\Sigma}^-$ 2.379 GeV ($\Omega\overline{\Omega}$ 3.345 GeV) $\Sigma^0 \overline{\Sigma}^0$ 2.385 GeV $\Sigma^- \overline{\Sigma}^+$ 2.395 GeV $\Xi^{-}\overline{\Xi}^{+}$ 2.643 GeV

 $J/\psi, \psi(2S) \rightarrow B\overline{B}$

$\mathcal{B}(J/\psi \to p\overline{p}) = (21.21 \pm 0.29) \times 10^{-4}$

decay mode	events			$\mathcal{B}(\text{units } 10^{-4})$
$J/\psi ightarrow \Lambda\Lambda$	440675	±	670	$19.43 \pm 0.03 \pm 0.33$
$\psi(2S) \to \Lambda \bar{\Lambda}$	31119	±	187	$3.97 \pm 0.02 \pm 0.12$
$J/\psi ightarrow \Sigma^0 ar{\Sigma}^0$	111026	±	335	$11.64 \pm 0.04 \pm 0.23$
$\psi(2S) \rightarrow \Sigma^0 \bar{\Sigma}^0$	6612	±	82	$2.44 \pm 0.03 \pm 0.11$
$J/\psi ightarrow \Xi^0 \bar{\Xi}^0$	134846	±	437	11.65 ± 0.04
$\psi(2S) \rightarrow \Xi^0 \bar{\Xi}^0$	10839	±	123	2.73 ± 0.03
$J/\psi ightarrow \Xi^- ar{\Xi}^+$	42811	±	231	10.40 ± 0.06
$\psi(2S) \rightarrow \Xi^- \bar{\Xi}^+$	5337	±	83	2.78 ± 0.05

 $1.31 \times 10^9 \text{ J/} \psi = 0.223 \times 10^9 \text{ J/} \psi$

PRD 93, 072003 (2016)
PLB770,217 (2017)
PRD 95, 052003 (2017)

4.48x10⁸ψ(2S)

Angular distributions in J/ψ , $\psi(2S) \rightarrow B\overline{B}$

Inclusive decay angular distributions

 $\Lambda \rightarrow p\pi^{-}: \widehat{\mathbf{n}}_{1} \rightarrow \Omega_{1} = (\cos \theta_{1}, \phi_{1}) : \boldsymbol{\alpha}_{-}$

 \Rightarrow Determine product: $\alpha_{-}P_{v} \sim \alpha_{-} \sin(\Delta \Phi)$

Exclusive joint angular distribution

$$e^+e^- \rightarrow (\Lambda \rightarrow p\pi^-)(\overline{\Lambda} \rightarrow \overline{p}\pi^+)$$

 $\Lambda \to p\pi^{-}: \widehat{\mathbf{n}}_{1} \to (\cos \theta_{1}, \phi_{1}) : \boldsymbol{\alpha}_{-} \qquad \overline{\Lambda} \xrightarrow{\vee} \overline{p}\pi^{+}: \widehat{\mathbf{n}}_{2} \to (\cos \theta_{2}, \phi_{2}) : \boldsymbol{\alpha}_{+}$

 $\boldsymbol{\xi}:(\cos \theta_{\Lambda}, \widehat{\mathbf{n}}_1, \widehat{\mathbf{n}}_2)$ 5D PhSp

 $d\Gamma \propto W(\boldsymbol{\xi}; \boldsymbol{\alpha_{\psi}}, \boldsymbol{\Delta \Phi}, \boldsymbol{\alpha_{-}}, \boldsymbol{\alpha_{+}}) =$ $1 + \alpha_{\psi} \cos^2 \theta_{\Lambda}$ Cross section $+ \alpha_{-} \alpha_{+} \left\{ \sin^{2} \theta_{\Lambda} (n_{1,x} n_{2,x} - \alpha_{\psi} n_{1,y} n_{2,y}) + (\cos^{2} \theta_{\Lambda} + \alpha_{\psi}) n_{1,z} n_{2,z} \right\}$ $+ \boldsymbol{\alpha}_{-} \boldsymbol{\alpha}_{+} \sqrt{1 - \boldsymbol{\alpha}_{\psi}^{2}} \cos(\boldsymbol{\Delta}\boldsymbol{\Phi}) \sin \theta_{\Lambda} \cos \theta_{\Lambda} \left(n_{1,x} n_{2,z} + n_{1,z} n_{1,x}\right)$ $+\sqrt{1-\alpha_{\psi}^{2}}\sin(\Delta \Phi)\sin\theta_{\Lambda}\cos\theta_{\Lambda}(\alpha_{-}n_{1,y}+\alpha_{+}n_{2,y})$ Polarization $\Delta \Phi \neq 0 \Rightarrow$ independent determination of α_{-} and α_{+}

Fäldt, Kupsc PLB772 (2017) 16

Exclusive joint angular distribution (modular form) $e^+e^- \rightarrow (\Lambda \rightarrow p\pi^-)(\overline{\Lambda} \rightarrow \overline{p}\pi^+)$

General two spin ¹/₂ **particle state:**

$$\rho_{1/2,\overline{1/2}} = \frac{1}{4} \sum_{\mu \overline{\nu}} C_{\mu \overline{\nu}} \sigma_{\mu}^{\Lambda} \otimes \sigma_{\overline{\nu}}^{\overline{\Lambda}}$$

$$(\sigma_0 = \mathbf{1}_2, \sigma_1 = \sigma_x, \sigma_2 = \sigma_y, \sigma_3 = \sigma_z)$$

$$\beta_{\psi} = \sqrt{1 - \alpha_{\psi}^2} \sin(\Delta \Phi) \quad \gamma_{\psi} = \sqrt{1 - \alpha_{\psi}^2} \cos(\Delta \Phi)$$

Apply decay matrices:

$$\sigma^{\Lambda}_{\mu} \to \sum_{\mu'=0}^{3} a^{\Lambda}_{\mu,\mu'} \, \sigma^{p}_{\mu'}$$

The result:

$$W = Tr\rho_{p,\bar{p}} = \sum_{\mu,\overline{\nu}=0}^{3} C_{\mu\overline{\nu}} a^{\Lambda}_{\mu,0} a^{\overline{\Lambda}}_{\overline{\nu},0}$$

E.Perotti, G.Faldt, AK, S.Leupold, JJ.Song PRD99 (2019)056008

Fit results

 $\Delta \Phi = 42.3^{\circ} \pm 0.6^{\circ} \pm 0.5^{\circ}$

Parameters	This work	Previous results		
$lpha_\psi$	$0.461 \pm 0.006 \pm 0.007$	0.469 ± 0.027	BESIII	
$\Delta \Phi$ (rad)	$0.740 \pm 0.010 \pm 0.008$	_		
α_{-}	$0.750 \pm 0.009 \pm 0.004$	0.642 ± 0.013	PDG	
$lpha_+$	$-0.758 \pm 0.010 \pm 0.007$	$-0.71 {\pm} 0.08$	PDG	
$ar{m{lpha}}_0$	$-0.692\pm0.016\pm0.006$	_		
A_{CP}	$-0.006\pm0.012\pm0.007$	0.006 ± 0.021	PDG	

BESIII Nature Phys. (2019)

Implications of the $J/\psi \rightarrow \Lambda \overline{\Lambda}$ analysis

 $\alpha_{-} = 0.721(6)(5)$

D. Ireland et al arXiv:1904.07616

$lpha_- \ \mathsf{FOR} \ \mathbf{\Lambda} o p \pi^-$

VALUE	EVTS	DOCUMENT ID		TECN	COMMENT
$0.750 \pm 0.009 \pm 0.004$	420k	ABLIKIM	2018AG	BES3	J/ψ to $\Lambda\overline{\Lambda}$
••• We do not use the following	data for averages, fits, lin	nits, etc. • • •			
0.584 ± 0.046	8500	ASTBURY	1975	SPEC	
0.649 ± 0.023	10325	CLELAND	1972	OSPK	
0.67 ± 0.06	3520	DAUBER	1969	HBC	From Edecay
0.645 ± 0.017	10130	OVERSETH	1967	OSPK	$arLambda$ from $\pi^- p$
0.62 ± 0.07	1156	CRONIN	1963	CNTR	$arLambda$ from $\pi^- p$

References:

ABLIKIM 20	18AG	arXiv:1808.08917	
ASTBURY	1975	NP B99 30	Measurement of the Differential Cross Section and the Spin Correlation Parameters P , A , and R in the Backward Peak of $\pi^- p \to K^0 \Lambda$ at 5 GeV/ c
CLELAND	1972	NP B40 221	A Measurement of the β -Parameter in the Charged Nonleptonic Decay of the Λ^0 Hyperon
DAUBER	1969	PR 179 1262	Production and Decay of Cascade Hyperons
OVERSETH	1967	PRL 19 391	Time Reversal Invariance in $\boldsymbol{\Lambda}$ Decay
CRONIN	1963	PR 129 1795	Measurement of the Decay Parameters of the Λ Particle

 $lpha_+ \ {\sf FOR} \ {\overline \Lambda} o {\overline p} \pi^+$

VALUE	EVTS	DOCUMENT ID		TECN	COMMENT
$-0.758 \pm 0.010 \pm 0.007$	420k	ABLIKIM	2018AG	BES3	J/ψ to $\Lambda\overline{\Lambda}$
· · · We do not use the following dat	ta for averages, fits, limits,	etc. • • •			
$-0.755 \pm 0.083 \pm 0.063$	≈ 8.7k	ABLIKIM	2010	BES	$J/\psi ightarrow \Lambda \overline{\Lambda}$
-0.63 ± 0.13	770	TIXIER	1988	DM2	$J/\psi ightarrow \Lambda \overline{\Lambda}$
References:					

ABLIKIM	2018AG	arXiv:1808.08917	
ABLIKIM	2010	PR D81 012003	Measurement of the Asymmetry Parameter for the Decay $\overline{\Lambda} o \overline{p} \pi^+$
TIXIER	1988	PL B212 523	Looking at $C\!P$ Invariance and Quantum Mechanics in $J/\psi o \Lambda \overline{\Lambda}$ Decay

news & views

PARTICLE PHYSICS

Anomalous asymmetry

A measurement based on quantum entanglement of the parameter describing the asymmetry of the Λ hyperon decay is inconsistent with the current world average. This shows that relying on previous measurements can be hazardous.

Ulrik Egede

INSPIRE search

INSPIRE search

CP violation in hyperon decays?

CP test:
$$A_{\Lambda} = \frac{\alpha_{-} + \alpha_{+}}{\alpha_{-} - \alpha_{+}}$$

 $A_{\Lambda} = -0.006 \pm 0.012 \pm 0.007$

B€SⅢ

$$J/\psi
ightarrow \Lambda\overline{\Lambda}$$

Previous result:

$$A_{\Lambda} = 0.013 \pm 0.021$$

PS185 PRC54(96)1877

	Events	Error A_{Λ}		
BESIII(2018)	4.2 ·10⁵	1.2· 10 ⁻²	1.31 10 ⁹ J/ψ	
BESIII	3 ⋅10 ⁶	5 ·10 ⁻³	10 ¹⁰ J/ψ L=0.47· 10 ³³ Δ $E = 0.9$ MeV	
SuperTauCharm	6 · 10 ⁸	3 ·10 ⁻⁴	L=10 ³⁵ cm ⁻² s ⁻¹ 2. 10 ¹² J/ $\psi \Delta E = 0.9$ MeV	- guese
SuperTauCharm + reduced ∆E	3 · 10 ⁹	1.4· 10 ⁻⁴	L=10 ³⁵ cm ⁻² s ⁻¹ 10 ¹³ J/ ψ $\Delta E < 0.9$ MeV??	

 $\begin{array}{l} -3 \times 10^{-5} \leq A_{\Lambda} \leq 4 \times 10^{-5} \\ -2 \times 10^{-5} \leq A_{\Xi} \leq 1 \times 10^{-5} \\ -5 \times 10^{-5} \leq A_{\Xi\Lambda} \leq 5 \times 10^{-5} \end{array} \tag{CKM}$

Tandean, Valencia PRD67, 056001

$$\sigma(A_{\Lambda}) = \frac{\sqrt{1+\varrho}}{\sqrt{2}\alpha_{\Lambda}}\sigma(\alpha_{\Lambda})$$

$e^+e^- \rightarrow J/\psi \rightarrow \Xi^-\overline{\Xi}^+ \rightarrow \Lambda \pi^-\overline{\Lambda}\pi^+ \rightarrow p\pi^-\pi^-\overline{p}\pi^+\pi^+$

 $d\Gamma \propto W(\xi; \omega)$ ξ 9 kinematical variables 9D PhSp Parameters: 2 production + 6 for decay chains

$$\boldsymbol{\omega} = \left(\boldsymbol{\alpha}_{\boldsymbol{\psi}}, \Delta \boldsymbol{\Phi}, \boldsymbol{\alpha}_{\Xi}, \boldsymbol{\phi}_{\Xi}, \boldsymbol{\alpha}_{\Lambda}, \overline{\boldsymbol{\alpha}}_{\Xi}, \overline{\boldsymbol{\phi}}_{\Xi}, \overline{\boldsymbol{\alpha}}_{\Lambda} \right)$$

$$W = \sum_{\mu,\overline{\nu}} C_{\mu\overline{\nu}} \sum_{\mu',\overline{\nu}'} a^{\Xi}_{\mu,\mu'} a^{\overline{\Xi}}_{\overline{\nu},\overline{\nu}'} a^{\Lambda}_{\mu',0} a^{\overline{\Lambda}}_{\overline{\nu}',0}$$

Variables and parameters factorize: $W(\xi; \omega) = \sum_{k=1}^{M} f_k(\omega) T_k(\xi)$ $\Delta \Phi \neq 0$ is not needed!

$$\Xi^{-}\overline{\Xi}^{+} \Lambda \overline{\Lambda}$$
$$\Delta \Phi \neq 0: \quad M = 72 \quad (7)$$

 $\Delta \Phi = 0: \quad M = 56 \quad (5)$

E.Perotti, G.Faldt, AK, S.Leupold, JJ.Song PRD99 (2019)056008

Expected number of events in BESIII

decay mode	Events	$\mathcal{B}(\text{units } 10^{-4})$	$lpha_\psi$	Events
	published			proposal
$J/\psi \to \Lambda \bar{\Lambda}$	440675 ± 670	$19.43 \pm 0.03 \pm 0.33$	0.469 ± 0.026	3400×10^{3}
$\psi(2S) \rightarrow \Lambda \Lambda$	31119 ± 187	$3.97 \pm 0.02 \pm 0.12$	0.824 ± 0.074	220×10^{3}
$J/\psi \to \Xi^0 \overline{\Xi}^0$	134846 ± 437	11.65 ± 0.04	0.66 ± 0.03	790×10^{3}
$\psi(2S) \to \Xi^0 \bar{\Xi}^0$	10839 ± 123	2.73 ± 0.03	0.65 ± 0.09	84×10^3
$J/\psi \rightarrow \Xi^- \bar{\Xi}^+$	42811 ± 231	10.40 ± 0.06	0.58 ± 0.04	1900×10^3
$\psi(2S) \to \Xi^- \bar{\Xi}^+$	5337 ± 83	2.78 ± 0.05	$0.91 \hspace{0.2cm} \pm \hspace{0.2cm} 0.13 \hspace{0.2cm}$	160×10^{3}

scaled to

Feb 2019: 10¹⁰ J/ψ

BESIII Phys book $3.2 \times 10^9 \psi(2S)$

Sensitivity estimate

detection efficiency constant validation

(e ⁺ e ⁻	→ J/վ	$h \rightarrow \Lambda \Lambda$
	\bar{lpha}_{A}	$lpha_\psi$	$\Delta \Phi$
α_{Λ}	0.87	-0.05	-0.07
$\bar{\alpha}_{\Lambda}$		0.05	0.07
$lpha_{oldsymbol{\psi}}$			0.28

$$\sigma(\alpha_{\Lambda}) = \frac{7}{\sqrt{N}} \quad (0.011)$$
$$\sigma(A_{\Lambda}) = \frac{9}{\sqrt{N}} \quad (0.014)$$

e^+e^-	\rightarrow]	/ψ →	$\Xi\overline{\Xi}$
	, j		

Correlation matrix:

	$ar{lpha}_{arepsilon}$	α_{Λ}	\bar{lpha}_{A}	$\phi_{arepsilon}$	$ar{\phi}_arepsilon$	$lpha_{oldsymbol{\psi}}$	$\varDelta \Phi$
$lpha_{\varXi}$	0.03	0.37	0.11	0.0	0.0	0.0	0.0
$ar{lpha}_{arepsilon}$		0.11	0.37	0.0	0.0	0.0	0.0
α_{Λ}			0.43	0.0	0.0	-0.1	0.0
\bar{lpha}_{Λ}	•	-	0	0.0	0.0	0.1	0.0
ϕ_{\varXi}		$\Phi = 0$	0		-0.15	0.0	0.0
$ar{\phi}_arepsilon$						0.0	0.0
$lpha_\psi$							0.0

$$\sigma(\alpha_{\Xi}) = \frac{2}{\sqrt{N}}$$
$$\sigma(\phi_{\Xi}) = \frac{6}{\sqrt{N}}$$
$$\sigma(\alpha_{\Lambda}) = \frac{3}{\sqrt{N}}$$

 $\sigma(A_{\Lambda}) = \frac{3.3}{\sqrt{N}}$

e^+e^-	\rightarrow]	[/\	J→	ΞΞ

Correlation matrix:

	$\overline{lpha}_{arepsilon}$	α_{Λ}	\overline{lpha}_A	$\phi_{arepsilon}$	$ar{\phi}_arepsilon$	$lpha_{oldsymbol{\psi}}$	$\Delta \Phi$	
$lpha_{\varXi}$	0.03	0.37	0.11	0.0	0.0	0.0	0.0	
$ar{lpha}_{arepsilon}$		0.11	0.37	0.0	0.0	0.0	0.0	
α_{Λ}			0.43	0.0	0.0	-0.1	0.0	
$\bar{\alpha}_{\Lambda}$	Δ	A	0	0.0	0.0	0.1	0.0	
$\phi_{arepsilon}$	$\Delta \Phi = 0$				-0.15	0.0	0.0	
$ar{\phi}_arepsilon$		$\overline{\alpha}_{-}$	α.	$\overline{\alpha}$.		0.0	0.0	
$lpha_{oldsymbol{\psi}}$	α_{π}	0.01	0.31	0.07			0.0	
	$\overline{\alpha}_{\Xi}$		0.07	0.31	3.3			
	α_{Λ}	٨	$-\pi$	0.39	$\sigma(A_{\Lambda}) = \frac{1}{\sqrt{N}}$			
		ΔΨ	$\frac{1}{2}$					

$$\sigma(\alpha_{\Xi}) = \frac{2}{\sqrt{N}}$$
$$\sigma(\phi_{\Xi}) = \frac{6}{\sqrt{N}}$$
$$\sigma(\alpha_{\Lambda}) = \frac{3}{\sqrt{N}}$$

P.Adlarson, AK

Conclusions:

Polarization in $e^+e^- \rightarrow \Lambda \overline{\Lambda}$ observed at J/ ψ [phase close to 40°]

 J/ψ and ψ' decays into hyperon-antihyperon: unique spin entangled system for CP tests and for determination of (anti-)hyperon decay parameters

In progress: analysis using 10^{10} J/ ψ collected, more ψ ' data ...

Prospect for a CP violation signal at Super Tau Charm Factories

 $\alpha_{-}: 0.642 \pm 0.012 \text{ (PDG1978-2018)} \Rightarrow 0.750 \pm 0.009 \pm 0.004$

Reset of α_{-} values in PDG 2019

Thank you!

5 parameters at each θ_{Λ}

