$MCSANC_{ee}$ – Monte Carlo Generator for polarized e^+e^- scattering at one-loop EW

Renat Sadykov DLNP JINR, Dubna for the SANC/ARIeL team

CEPC Topical Workshop 4th April 2019, IHEP, Beijing

Outline

- History overview
- ARIeL project
- Polarization effects
- Cross section at one-loop
- High order (HA) corrections through $\Delta\rho$
- Results
- Conclusions and plans
- Demonstration of the generator for $e^+e^-
 ightarrow ZH$

History overview

Why ARIeL?

- Advanced
- Research of
- Interactions in
- e⁺e⁻
- coLlisions

Goals

- Preparation of research program fo future e^+e^- colliders:
 - Precision study of $e^+e^-
 ightarrow \gamma\gamma$ and setting limits on the NP models
 - Precision measurement of the Higgs boson mass M_H
 - Determination of top quark polarization
 - Measurement of $\gamma\gamma \to W^+W^-$ and $\gamma\gamma \to ZZ$ and search for anomalous quarting coupling
- Theoretical support:
 - Create e^+e^- Monte Carlo generator with polarization at complete one-loop EW and leading multiloop for processes $e^+e^- \rightarrow e^+e^-$ ($\mu\mu, \tau\tau, tt, HZ, H\gamma, Z\gamma, ZZ, H\nu\nu, H\mu\mu, ff\gamma, \gamma\gamma$)
 - Interface to parton shower MC (PYTHIA8 etc.)
 - Implement a single-resonance approach to complex processes
 - Elaborate the standard procedure for $2\rightarrow 3,4$ helicity amplitudes
 - Create building blocks for complete EW 2-loops and QCD 3-loops, plus leading EW 3-loops and QCD 4-loops

Decomposition of the e^{\pm} polarization vectors

Moortgat-Pick, G. et al. Phys.Rept. 460 (2008) 131-243

Matrix element squared

$$\begin{split} |\mathcal{M}|^{2} &= L_{e^{-}}^{``}R_{e^{+}}^{``}|\mathcal{H}_{-+}|^{2} + R_{e^{-}}^{``}L_{e^{+}}^{``}|\mathcal{H}_{+-}|^{2} + L_{e^{-}}^{``}L_{e^{+}}^{``}|\mathcal{H}_{--}|^{2} + R_{e^{-}}^{``}R_{e^{+}}^{``}|\mathcal{H}_{++}|^{2} \\ &- \frac{1}{2}P_{e^{-}}^{\perp}P_{e^{+}}^{\perp}Re\Big[e^{i(\Phi_{+}-\Phi_{-})}\mathcal{H}_{++}\mathcal{H}_{-+}^{*} + e^{i(\Phi_{+}+\Phi_{-})}\mathcal{H}_{+-}\mathcal{H}_{++}^{*}\Big] \\ &+ P_{e^{-}}^{\perp}Re\Big[e^{i\Phi_{-}}\left(L_{e^{+}}^{``}\mathcal{H}_{+-}\mathcal{H}_{--}^{*} + R_{e^{+}}^{``}\mathcal{H}_{++}\mathcal{H}_{-+}^{*}\right)\Big] \\ &- P_{e^{+}}^{\perp}Re\Big[e^{i\Phi_{+}}\left(L_{e^{-}}^{``}\mathcal{H}_{-+}\mathcal{H}_{--}^{*} + R_{e^{-}}^{``}\mathcal{H}_{++}\mathcal{H}_{++}^{*}\right)\Big], \end{split}$$

where

$$L_{e^{\pm}}^{``}=rac{1}{2}(1-P_{e^{\pm}}^{``}), \quad R_{e^{\pm}}^{``}=rac{1}{2}(1+P_{e^{\pm}}^{``}), \quad \Phi_{\pm}=\phi_{\pm}-\phi,$$

 \mathcal{H}_{--} , \mathcal{H}_{++} , \mathcal{H}_{-+} , \mathcal{H}_{+-} — helicity amplitudes. Moortgat-Pick, G. et al. Phys.Rept. 460 (2008) 131-243

Scheme of FF calculation

- One-loop accuracy level with using the renormalization scheme on the mass surface in R_{ξ} calibration with three calibration parameters ξ_{A} , ξ_{Z} and $\xi \equiv \xi_{W}$
- Dimensional regularization to parameterize the ultraviolet divergences
- Loop integrals are expressed in terms of standard scalar Passarino-Veltman functions: *A*₀, *B*₀, *C*₀, *D*₀
- The error criterion is the absence of ξ dependencies

Cross-section structure

The cross-section of this processes at one-loop can be devided into four parts:

$$\sigma^{1 ext{-loop}} = \sigma^{ ext{Born}} + \sigma^{ ext{virt}}(oldsymbol{\lambda}) + \sigma^{ ext{soft}}(oldsymbol{\lambda}, \omega) + \sigma^{ ext{hard}}(\omega),$$

Contributions due to:

- $\sigma^{\rm Born}$ Born level cross-section,
- $\sigma^{\rm virt}$ virtual(loop) corrections,
- $\sigma^{
 m soft}$ soft photon emission,

 σ^{hard} — hard photon emission (with energy $E_{\gamma} > \omega$).

Auxiliary parameters λ ("photon mass") and ω cancel out after summation.

Helicity Amplitudes (HA) approach

We count all contributions through HA approach.

The cross section of the generic $2 \rightarrow 2(\gamma)$ process $e^+e^- \rightarrow X_3X_4(\gamma)$ $(X_3X_4 = e^-e^+, \mu^-\mu^+, ZH, \gamma Z, \gamma \gamma, ...)$

$$\sigma_{P_{e^-}P_{e^+}} = \frac{1}{4} \sum_{\chi_1,\chi_2} (1 + \chi_1 P_{e^-}) (1 + \chi_2 P_{e^+}) \sigma_{\chi_1\chi_2},$$

where $\chi_i = -1(+1)$ corresponds to lepton with left (right) helicity state.

The virt(Born) cross section:

$$\frac{d\sigma_{\chi_1\chi_2}^{\mathsf{virt}(\mathsf{Born})}}{d\cos\theta} = \frac{\sqrt{\lambda(s, M_3^2, M_4^2)}}{2^5\pi s^2} \left|\mathcal{H}_{\chi_1\chi_2}^{\mathsf{virt}(\mathsf{Born})}\right|^2,$$

where

$$\left|\mathcal{H}_{\chi_{1}\chi_{2}}^{\mathsf{virt}(\mathsf{Born})}\right|^{2} = \sum_{\chi_{3},\chi_{4}} \left|\mathcal{H}_{\chi_{1}\chi_{2}\chi_{3}\chi_{4}}^{\mathsf{virt}(\mathsf{Born})}\right|^{2}.$$

Helicity Amplitudes (HA) approach

The soft term is factorized to Born-level cross section:

$$\frac{d\sigma_{\chi_1\chi_2}^{\text{soft}}}{d\cos\theta} = \frac{d\sigma_{\chi_1\chi_2}^{\text{Born}}}{d\cos\theta} \cdot \frac{\alpha}{2\pi} K^{\text{soft}}(\omega,\lambda).$$

The cross section for hard Bremsstrahlung

$$\begin{aligned} \frac{d\sigma_{\chi_1\chi_2}^{\text{hard}}}{ds'd\cos\theta_4 d\phi_4 d\cos\theta_5} &= \frac{s-s'}{8(4\pi)^4 ss'} \frac{\sqrt{\lambda(s', M_3^2, M_4^2)}}{\sqrt{\lambda(s, m_e^2, m_e^2)}} \Big| \mathcal{H}_{\chi_1\chi_2}^{\text{hard}} \Big|^2, \end{aligned}$$
where $s = (p_1 + p_2)^2$, $s' = (p_3 + p_4)^2$ and
$$\Big| \mathcal{H}_{\chi_1\chi_2}^{\text{hard}} \Big|^2 &= \sum_{\chi_3,\chi_4,\chi_5} \Big| \mathcal{H}_{\chi_1\chi_2\chi_3\chi_4\chi_5}^{\text{hard}} \Big|^2.$$

HA for Bhabha

At one-loop level we have six non-zero HAs (four independent):

$$\begin{split} \mathcal{H}_{++++} &= \mathcal{H}_{----} = -2e^2 \, \frac{s}{t} \Big(\mathcal{F}_{QQ}^{(\gamma,Z)}(t,s,u) - \chi_z^t \delta_e \mathcal{F}_{QL}^z(t,s,u) \Big), \\ \mathcal{H}_{+-+-} &= \mathcal{H}_{-+-+} = -2e^2 \, \frac{t}{s} \Big(\mathcal{F}_{QQ}^{(\gamma,Z)}(s,t,u) - \chi_z^s \delta_e \mathcal{F}_{QL}^z(s,t,u) \Big), \\ \mathcal{H}_{+--+} &= 2e^2 \, \Big(\frac{u}{s} \Big[\mathcal{F}_{QQ}^{(\gamma,Z)}(s,t,u) + \chi_z^s \, \big(\mathcal{F}_{LL}^z(s,t,u) - 2\delta_e \mathcal{F}_{QL}^z(s,t,u) \big) \Big] \\ &+ \frac{u}{t} \Big[\mathcal{F}_{QQ}^{(\gamma,Z)}(t,s,u) + \chi_z^t \, \big(\mathcal{F}_{LL}^z(t,s,u) - 2\delta_e \mathcal{F}_{QL}^z(t,s,u) \big) \Big] \Big), \\ \mathcal{H}_{-++-} &= 2e^2 \, \Big(\frac{u}{s} \mathcal{F}_{QQ}^{(\gamma,Z)}(s,t,u) + \frac{u}{t} \mathcal{F}_{QQ}^{(\gamma,Z)}(t,s,u) \Big), \end{split}$$

where

$$\chi_{Z}^{s} = \frac{1}{4s_{W}^{2}c_{W}^{2}} \frac{s}{s - M_{Z}^{2} + iM_{Z}\Gamma_{Z}}, \quad \chi_{Z}^{t} = \frac{1}{4s_{W}^{2}c_{W}^{2}} \frac{t}{t - M_{Z}^{2}}, \quad \delta_{e} = v_{e} - a_{e} = 2s_{W}^{2},$$

 $\mathcal{F}_{QQ}^{(\gamma,Z)}(\textbf{a},\textbf{b},\textbf{c}) = \mathcal{F}_{QQ}^{\gamma}(\textbf{a},\textbf{b},\textbf{c}) + \chi_{Z}^{a}\delta_{e}^{2}\mathcal{F}_{QQ}^{Z}(\textbf{a},\textbf{b},\textbf{c}).$

We get the Born level HAs by replacing $\mathcal{F}_{LL}^Z \to 1$, $\mathcal{F}_{QL}^Z \to 1$, $\mathcal{F}_{QQ}^Z \to 1$ and $\mathcal{F}_{QQ}^\gamma \to 1$.

We follow the recipe introduced in J. Fleischer et al. Phys.Lett. B319 (1993) 249-256.

The ρ parameter is defined as the ratio of the neutral current to charged current amplitudes at zero momentum transfer:

$$p=rac{G_{NC}(0)}{G_{CC}(0)}=rac{1}{1-\Delta
ho}\,,$$

where $G_{CC}(0) = G_{\mu}$ is the Fermi constant defined from the μ -decay width. Perturbatively

$$\Delta \rho = \Delta \rho^{(1)} + \Delta \rho^{(2)} + \dots$$

Expanding ρ up to quadratic terms $\Delta \rho^2$, we have

 $\rho = 1 + \Delta \rho + \Delta \rho^2 \,.$

The leading in $G_{\mu}m_t^2$ NLO EW contribution to $\Delta \rho$ is explicitly given by

$$\Delta
ho^{(1)}\Big|^{G_{\mu}} = 3x_t = rac{3\sqrt{2}G_{\mu}m_t^2}{16\pi^2}$$

At the two-loop level, quantity $\Delta \rho$ contains two contributions:

$$\Delta \rho = 3x_t \left[1 + \rho^{(2)} \left(M_{\rm H}^2/m_t^2 \right) x_t \right] \left[1 - \frac{2\alpha_s(M_z^2)}{9\pi} (\pi^2 + 3) \right].$$

They consist of the following:

- two-loop EW part at $\mathcal{O}(G_{\mu}^2)$.
- mixed two-loop EW \otimes QCD at $\mathcal{O}(G_{\mu}\alpha_s)$

The leading in $G_{\mu}m_t^2$ universal higher order (h.o.) corrections may be taken into account via the replacements, [Dittmaier et al., JHEP 1001 (2010) 060]:

$$\begin{split} s^2_w &\to \bar{s}^2_w \equiv s^2_w + \Delta \rho \, c^2_w \,, \\ c^2_w &\to \bar{c}^2_w \equiv 1 - \bar{s}^2_w = (1 - \Delta \rho) \, c^2_w \,, \\ \alpha_{G_\mu} &\to \alpha_{G_\mu} \frac{\bar{s}^2_w}{s^2_w} \end{split}$$

in the LO expression for the cross section.

(

This approach correctly reproduces terms up to $\mathcal{O}(\Delta \rho^2)$.

Given these replacements, we get the contributions of h.o. corrections to the scalar form factors of the invariant amplitude

A large group of dominant radiative corrections can be absorbed into the shift of the ρ parameter from its lowest order value $\rho_{Born} = 1$.

These groups of radiative corrections are:

$$\begin{aligned} \Delta \rho &= \quad \Delta \rho_{x_t} + \Delta \rho_{\alpha \alpha_s} + \Delta \rho_{x_t \alpha_s} + \Delta \rho_{x_t^3 + x_t^2 \alpha_s} \\ &+ \Delta \rho_{x_t \alpha_s^2} + \Delta \rho_{x_t^2} + \Delta \rho_{x_t \alpha_s^3} + \Delta \rho_{x_t^2(\text{bos})} + \Delta \rho_{x_t^3} \end{aligned}$$

- $\Delta \rho_{x_t} 1$ -loop EW at $\mathcal{O}(x_t)$
- $\Delta \rho_{\alpha \alpha_s}$ 2-loop mixed QCD-EW at $\mathcal{O}(\alpha \alpha_s)$
- $\Delta \rho_{\mathsf{x}_t \alpha_s} 2$ -loop large top-mass at $\mathcal{O}(\mathsf{x}_t \alpha_s)$
- $\Delta \rho_{x_t^3 + x_t^2 \alpha_s}$ leading 3-loop large top-mass contributions
- $\Delta \rho_{x_t \alpha_s^2} 3$ -loop mixed at $\mathcal{O}(x_t \alpha_s^2)$
- $\Delta \rho_{x_t^2} 2$ -loop EW at $\mathcal{O}(x_t^2)$
- $\Delta \rho_{x_t \alpha_s^3}$ 4-loop mixed at $\mathcal{O}(x_t \alpha_s^3)$
- $\Delta \rho_{x_t^2(bos)} 2$ -loop EW bosonic corrections at $\mathcal{O}(x_t^2)$
- $\Delta \rho_{x_t^3(bos)} 3$ -loop EW corrections at $\mathcal{O}(x_t^3)$

All of these corrections that were computed by different groups in the past will be included in the generator

MCSANC_{ee} generator

We created Monte Carlo generator of unweighted events for the polarized e^+e^- scattering with complete one-loop EW corrections.

This generator uses adaptive Monte Carlo algorithm mFOAM [S. Jadach and P. Sawicki. CPC 177:441-458,2007] which is a part of ROOT [https://root.cern.ch] program.

Basic processes of SM for e^+e^- annihilation

The cross sections are given for polar angles between $10^o < \theta < 170^o$ in the final state

Setup for tuned comparison

Input parameters:

$$\begin{split} &\alpha^{-1}(0) = 137.03599976, \\ &M_W = 80.4514958 \; \text{GeV}, \quad M_Z = 91.1876 \; \text{GeV}, \quad \Gamma_Z = 2.49977 \; \text{GeV}, \\ &m_e = 0.51099907 \; \text{MeV}, \quad m_\mu = 0.105658389 \; \text{GeV}, \quad m_\tau = 1.77705 \; \text{GeV}, \\ &m_d = 0.083 \; \text{GeV}, \quad m_s = 0.215 \; \text{GeV}, \quad m_b = 4.7 \; \text{GeV}, \\ &m_u = 0.062 \; \text{GeV}, \quad m_c = 1.5 \; \text{GeV}, \quad m_t = 173.8 \; \text{GeV}. \end{split}$$

Cuts:

 $|\cos heta| < 0.9,$ $E_{\gamma} > 1 \text{ GeV}$ (for comparison of hard Bremsstrahlung).

Tuned comparison of our results for polarized Born and hard Bremsstrahlung with the results WHIZARD [Eur.Phys.J.C71 (2011) 1742] and CalcHEP [CPC 184(2013) 1729-1769] programs shows agreement within statistical errors.

Unpolarized Soft + virtual contribution agree with the results of alTALC [CPC 174 (2006) 71-82] (for $e^+e^- \rightarrow e^+e^-, \mu^+\mu^-, \tau^+\tau^-$) and Grace-Loop [Phys.Rept. 430 (2006) 117-209] (for $e^+e^- \rightarrow ZH$)

For details, see the talk by Andrej Arbuzov

$e^+e^- ightarrow e^+e^-$: Born vs 1-loop

P_{e^-} , P_{e^+}	0, 0	-0.8, 0	-0.8, -0.6	-0.8, 0.6		
	$\sqrt{s} = 250 \text{ GeV}$					
$\sigma^{\sf Born}_{e^+e^-}$, pb	56.676(1)	57.774(1)	56.273(1)	59.275(1)		
$\sigma^{1- ext{loop}}_{e^+e^-}$, pb	61.73(1)	62.59(1)	61.88(1)	63.29(1)		
δ, %	8.92(1)	8.33(1)	9.96(1)	6.77(1)		
	\checkmark	$\overline{s} = 500 \text{GeV}$	/			
$\sigma^{Born}_{e^+e^-}$, pb	14.379(1)	15.031(1)	12.706(1)	17.355(1)		
$\sigma^{1- ext{loop}}_{e^+e^-}$, pb	15.47(1)	15.87(1)	13.86(1)	17.88(1)		
δ, %	7.56(1)	5.59(1)	9.09(1)	3.05(1)		
$\sqrt{s} = 1000 \text{ GeV}$						
$\sigma^{\sf Born}_{e^+e^-}$, pb	3.6792(1)	3.9057(1)	3.0358(1)	4.7756(1)		
$\sigma_{e^+e^-}^{1-\text{loop}}$, pb	3.864(1)	3.945(1)	3.233(1)	4.654(1)		
δ, %	5.02(1)	0.99(1)	6.50(1)	-2.54(1)		

 $e^+e^-
ightarrow \mu^-\mu^+$ $e^+e^-
ightarrow au^- au^+$

$e^+e^- ightarrow \mu^+\mu^-$: Born vs 1-loop

P_{e^-}, P_{e^+}	0, 0	-0.8, 0	-0.8, -0.6	-0.8, 0.6			
	$\sqrt{s} = 250 \text{ GeV}$						
$\sigma^{ m Born}_{\mu^+\mu^-}$, pb	1.417(1)	1.546(1)	0.7690(2)	2.323(1)			
$\sigma^{1- ext{loop}}_{\mu^+\mu^-}$, pb	2.397(1)	2.614(1)	1.301(1)	3.927(1)			
δ,%	69.1(1)	69.1(1)	69.2(1)	69.1(1)			
	V	$\sqrt{s} = 500 \text{ GeV}$					
$\sigma^{ m Born}_{\mu^+\mu^-}$, pb	0.3436(1)	0.3716(1)	0.1857(1)	0.5575(1)			
$\sigma^{1- ext{loop}}_{\mu^+\mu^-}$, pb	0.4696(1)	0.4953(1)	0.2506(1)	0.7399(1)			
δ,%	36.7(1)	33.3(1)	35.0(1)	32.7(1)			
$\sqrt{s} = 1000 \text{ GeV}$							
$\sigma^{ m Born}_{\mu^+\mu^-}$, pb	0.08535(1)	0.09213(1)	0.04608(1)	0.1382(1)			
$\sigma^{1- ext{loop}}_{\mu^+\mu^-}$, pb	0.1163(1)	0.1212(1)	0.06169(1)	0.1807(1)			
δ,%	36.2(1)	31.6(1)	33.9(1)	30.8(1)			

$e^+e^- \rightarrow \tau^+\tau^-$: Born vs 1-loop

P_{e^-}, P_{e^+}	0, 0	-0.8, 0	-0.8, -0.6	-0.8, 0.6		
$\sqrt{s} = 250 \text{ GeV}$						
$\sigma^{ m Born}_{ au^+ au^-}$, pb	1.417(1)	1.546(1)	0.7692(1)	2.324(1)		
$\sigma_{ au^+ au^-}^{ m 1-loop}$, pb	2.360(1)	2.575(1)	1.298(1)	3.850(1)		
δ,%	66.5(1)	66.5(1)	68.8(1)	65.7(1)		
	$\sqrt{s} = 500 \text{ GeV}$					
$\sigma^{ m Born}_{ au^+ au^-}$, pb	0.3436(1)	0.3715(1)	0.1857(1)	0.5575(1)		
$\sigma_{ au^+ au^-}^{ m 1-loop}$, pb	0.4606(1)	0.4861(1)	0.2466(1)	0.7257(1)		
δ,%	34.0(3)	30.8(1)	32.8(1)	30.1(1)		
$\sqrt{s} = 1000 \text{ GeV}$						
$\sigma^{ m Born}_{ au^+ au^-}$, pb	0.08534(2)	0.09213(1)	0.04608(1)	0.1382(1)		
$\sigma_{ au^+ au^-}^{ m 1-loop}$, pb	0.1134(1)	0.11885(2)	0.06067(1)	0.1770(1)		
δ,%	33.6(1)	29.0(1)	31.7(1)	28.1(1)		

$e^+e^- \rightarrow \mu^+\mu^-$: A_{LR} distributions in $\cos\theta$ $A_{LR} = \frac{\sigma_{LR} - \sigma_{RL}}{\sigma_{LR} + \sigma_{RL}}$

 $e^+e^-
ightarrow \mu^+\mu^-$: distributions in $\cos \theta$

 $e^+e^-
ightarrow ZH$

$e^+e^- ightarrow ZH$: Born vs 1-loop

P_{e^-}, P_{e^+}	0, 0	-0.8, 0	-0.8, -0.6	-0.8, 0.6		
	$\sqrt{s} = 250 \text{ GeV}$					
σ^{Born} , fb	205.64(1)	242.55(1)	116.16(1)	368.93(1)		
σ^{1-loop} , fb	186.6(1)	201.5(1)	100.8(1)	302.2(1)		
δ,%	-9.24(1)	-16.94(1)	-13.25(1)	-18.10(1)		
	v	$\sqrt{s} = 500 \text{ GeV}$	/			
σ^{Born} , fb	51.447(1)	60.680(1)	29.061(1)	92.299(1)		
σ^{1-loop} , fb	57.44(1)	62.71(1)	31.25(1)	94.17(2)		
δ,%	11.65(1)	3.35(2)	7.54(1)	2.03(2)		
$\sqrt{s} = 1000 { m GeV}$						
σ^{Born} , fb	11.783(1)	13.898(1)	6.6559(1)	21.140(1)		
σ^{1-loop} , fb	12.92(1)	13.91(1)	6.995(1)	20.83(1)		
δ,%	9.68(1)	0.10(2)	5.09(2)	-1.47(2)		

$e^+e^- \rightarrow ZH$: A_{LR} distributions in $\cos \theta$

 $e^+e^-
ightarrow Z\gamma$

$e^+e^- \rightarrow Z\gamma$: Born vs 1-loop (preliminary)

\sqrt{s} , GeV	250	500	1000
$\sigma_{Z\gamma}^{Born}$, pb	15.7038(6)	3.3858(3)	0.81958(3)
$\sigma_{Z\gamma}^{1-\text{loop}}$, pb	24.37(1)	5.23(6)	1.237(3)
δ, %	55.20(6)	54.4(2)	50.9(4)

P_{e^-} , P_{e^+}	0, 0	-0.8, 0	-0.8, -0.6	-0.8, 0.6	
$\sqrt{s} = 250 \text{ GeV}$					
$\sigma_{Z\gamma}^{Born}$, pb	15.7038(6)	18.520(4)	8.870(3)	28.174(2)	
$\sigma_{Z\gamma}^{1-\mathrm{loop}}$, pb	24.37(1)	28.00(1)	13.53(1)	42.13(2)	
δ, %	55.20(6)	51.11(8)	52.57(9)	49.55(7)	

$e^+e^- \rightarrow Z\gamma$: distributions in $\cos \theta_Z$ (preliminary)

$e^+e^- ightarrow \gamma$: WHIZARD vs CalcHEP vs MCSANCee

P_{e^-}, P_{e^+}	0, 0	-0.8, 0	-0.8, -0.6	-0.8, 0.6	
$\sqrt{s} = 250 \text{ GeV}$					
σ^{hard} , fb	594.1(1)	594.1(1)	308.9(1)	879.2(1)	
σ^{hard} , fb	594.0(1)	593.8(1)	308.8(1)	879.2(1)	
σ^{hard} , fb	594.0(1)	594.2(1)	308.9(1)	879.1(1)	
		$\overline{s} = 500 \mathrm{Ge}$	۷		
σ^{hard} , fb	158.6(1)	158.5(1)	82.50(1)	234.5(1)	
σ^{hard} , fb	158.7(1)	158.6(1)	82.50(1)	234.8(1)	
σ^{hard} , fb	158.7(1)	158.7(1)	82.50(1)	234.8(1)	
$\sqrt{s} = 1000 { m GeV}$					
σ^{hard} , fb	42.18(1)	42.20(1)	21.95(1)	62.43(1)	
σ^{hard} , fb	42.19(1)	42.18(1)	21.94(1)	62.45(1)	
σ^{hard} , fb	42.17(1)	42.20(1)	21.94(1)	62.44(1)	

Cuts: $|\cos \theta_{\gamma}| < 0.9$, $E_{\gamma} > 0.0025$ GeV for each of the final photons

Summary

- We created Monte Carlo generator of unweighted events $\underline{MCSANC_{ee}}$ for polarized e^+e^- scattering with complete one-loop EW corrections
- Now it includes the following processes:
 - $e^+e^- \to e^+e^-$ (Phys.Rev.D 98, 013001)
 - $e^+e^- \to ZH$ (arXiv:1812.10965)
 - $e^+e^-
 ightarrow \mu^+\mu^-$ (or $\tau^+\tau^-$) (preliminary)
 - $e^+e^- \rightarrow Z\gamma$ (preliminary)
 - $e^+e^- \rightarrow \gamma\gamma$ (preliminary)
- Support of Les Houches format for events

Plans

- $\bullet\,$ to include in $\underline{\text{MCSANC}_{ee}}$ the following processes:
 - $e^+e^- \rightarrow t\bar{t}$
 - $e^+e^- \rightarrow ZZ$
 - $e^+e^- \rightarrow H\gamma$
 - $e^+e^- \rightarrow f\bar{f}\gamma$
 - $e^+e^- \rightarrow f\bar{f}H$
 - $\gamma\gamma \rightarrow \gamma\gamma$, $\gamma\gamma \rightarrow e^+e^-$, $\gamma\gamma \rightarrow HZ$, $\gamma\gamma \rightarrow Z\gamma$, $\gamma\gamma \rightarrow ZZ$
 - $e^{\pm}\gamma \rightarrow e^{\pm}\gamma$
- to extend the functionality of the generator with actual energy spectrum of initial particles, leading multi-loop corrections, and with transverse polarization
- Public pre-release: June 2019