

REVIEW OF THE MONOLITHIC CMOS SENSOR TECHNOLOGY AND APPROACH FOR HIGH LUMINOSITY LHC

Patrick Pangaud

Aix Marseille University / Centre de Physique des Particules de Marseille FRANCE

IHEP - EPD seminar

pangaud@cppm.in2p3.fr

Abstract

The LHC upgrade and other future colliders will lead to a significant **increase in luminosity.**

The context of the ATLAS program focusing on the future tracker upgrade is a good start to show the benefits in **the design of a new approach tracker**, especially at a nominal leveled instantaneous luminosity of 5×10^{34} cm⁻².s⁻¹

These future tracker detectors require enhanced granularity, reduced material budget and increased radiation hardness to all components.

I will introduce the benefit of **monolithic depleted CMOS sensor (DMAPS)**, which may be able to replace the diode sensor and electronics of a hybrid module.

This new technology proposes thinner module with less material, finer pixel granularity, lower price on any used technology and much simpler production model.

In addition, enough **radiation hardness** for at least 1.5 10¹⁵ neq /cm⁻².

Content

- Silicon Sensor : A quick overview
- Why Depleted CMOS sensor
- New electronics development for the pixel detector of the ATLAS ITk
 - New Read-Out Chip for ATLAS and CMS phase II pixel detectors.
 - CMOS pixel sensors in the ITk.
- Conclusion and Perspectives.

SILICON SENSOR: A QUICK OVERVIEW

Tracking detector for particle detection

- Understanding an event
 - Individual tracks ~ particles
 - Measures their proprieties
 - LHC: ~1000 particles per 25ns "events"

CENTRE DE PHYSIQUE DES PARTICULES DE MARSEILLE

Tracking detector for particle detection

- Understanding an event
 - Individual tracks ~ particles
 - Measures their proprieties
 - LHC: ~1000 particles per 25ns "events"
- Track properties
 - Momentum
 - Reconstruction invariant masses
 - Energy
 - Mass ⇔ identification
 - Origin vertexing (track merging)
 - Identify decays
 - Measures flight distance

Tracking detector for particle detection

Magnetic field curves trajectories

$$\frac{\overrightarrow{dp}}{dt} = \overrightarrow{qv} \times \overrightarrow{B}$$

Rewritten with position (x) and path length (I) = basic equation $\frac{\overrightarrow{d^2r}}{d^2l} \propto \frac{\overrightarrow{qB}(\overrightarrow{x})}{||n||} \times \frac{\overrightarrow{dr}}{dl}$

$$\frac{\overrightarrow{d^2r}}{d^2l} \propto \frac{\overrightarrow{qB}(\overrightarrow{x})}{\|\overrightarrow{n}\|} \times \frac{\overrightarrow{dr}}{dl}$$

In B=4T a 1 GeV/c particle will get a sagitta of 1.5mm

Tracking detector for particle detection

Magnetic field curves trajectories

$$\frac{\overrightarrow{dp}}{dt} = q\overrightarrow{v} \times \overrightarrow{B}$$

- Rewritten with position (x) and path length (I) = basic equation $\frac{\overrightarrow{d^2r}}{d^2l} \propto \frac{\overrightarrow{qB}(\overrightarrow{x})}{||p||} \times \frac{\overrightarrow{dr}}{dl}$
- In B=4T a 1 GeV/c particle will get a sagitta of 1.5mm
- Fixed-target experiments
 - Dipole magnet
 - Measurement of deflection (angle variation)
- Collider experiment
 - Barrel-type with axial B
 - Measurement of curvature (sagitta)
- Other arrangements
 - Toroidal B .. Not covered
- Two consequences
 - Position sensitive detectors needed
 - Any perturbation effects on trajectories is a pain

Silicon sensors: strips

- Basic sensitive element
 - e-h pairs are generated by ionization in silicon
 - 3.6 eV needed
 - 300 µm thick Si generates ~22k charges for MIP BUT beware of Landau fluctuation
 - Collection: P-N junction = diode
 - Full depletion (10V to 0.5 kV) generates a drift field (104 V/cm)
 - Collect time ~ 15 ps/µm

Silicon sensors: strips

- Basic sensitive element
 - e-h pairs are generated by ionization in silicon
 - 3.6 eV needed
 - 300 µm thick Si generates ~22k charges for MIP BUT beware of Landau fluctuation
 - Collection: P-N junction = diode
 - Full depletion (10V to 0.5 kV) generates a drift field (104 V/cm)
 - Collect time ~ 15 ps/μm
- Silicon strip detectors
 - Sensor "easily" manufactured with pitch down to ~25 μm
 - 1D if single sided
 - Pseudo-2D if double-sided
 - Stereo-angle useful against ambiguities
 - Difficult to go below 100 µm thickness
 - Speed and radiation hardness: LHC-grade

Silicon sensors: hybrid-pixels

- Concept
 - Strips → pixels on sensor
 - One to one connection from electronic channels to pixels
- Performances
 - Real 2D detector & keep performances of strips
 - Can cope with LHC rate (speed & radiation)
 - non-ionizing rad. tolerance ~ 10¹⁶ neg(1MeV)/cm²

Silicon sensors: hybrid-pixels

- Concept
 - Strips → pixels on sensor
 - One to one connection from electronic channels to pixels
- Performances
 - Real 2D detector & keep performances of strips
 - Can cope with LHC rate (speed & radiation)
 - non-ionizing rad. tolerance ~ 10¹⁶ neq(1MeV)/cm²

- Pitch size limited by physical connection and number of transistors for treatment
 - minimal (today): 50x50 μm2 typical: 100x150/400 μm2
 - spatial resolution about 10 μm
- Material budget
 - Minimal(today): 100 μm(sensor)+100 μm(electronic)
 - Power budget: 10 µW/pixel

Silicon sensors: CMOS Pixel Sensor

- Concept
 - Use industrial CMOS process
 - Implement an array of sensing diode
 - Amplify the signal with transistors near the diode
 - Benefit to
 - granularity: pixel pitch down to ~10 μm
 - material: sensitive layer thickness as low as 10-20 μm
 - Known as Monolithic Active Pixel Sensors (MAPS)

Silicon sensors: CMOS Pixel Sensor

- Concept
 - Use industrial CMOS process
 - Implement an array of sensing diode
 - Amplify the signal with transistors near the diode
 - Benefit to
 - granularity: pixel pitch down to ~10 μm
 - material: sensitive layer thickness as low as 10-20 μm
 - Known as Monolithic Active Pixel Sensors (MAPS)
- Performances (Sensitive undepleted layer)
 - Slow (100 ns) thermal drift of charges (diffusion)
 - non-ionizing rad. tolerance $\lesssim 10^{13} \text{ neq}(1\text{MeV})/\text{cm}^2$
 - Spatial resolution 1-10 μm (in 2 dimensions)
 - Material budget
 - Material budget: ≤ 50 µm
 - Power budget: < µW/pixel

Others Silicon sensors

DEPFET

CPPM

Depleted p-channel FET

- Fully depleted sensitive layer
- Large sensor amplification
- Still require some read-out circuits
 - Not fully monolithic
 - Possibly limited in read-out speed

CENTRE DE PHYSIQUE DES PARTICULES DE MARSEILLE

Others Silicon sensors

DEPFET

Depleted p-channel FET

Silicon On Insulator (SOI)

- Fully depleted sensitive layer
- Large sensor amplification
- Still require some read-out circuits
 - Not fully monolithic
 - Possibly limited in read-out speed

- Partially depleted sensitive layer
- Fully monolithic
- Electronics similar to MAPS
- But Backgate effect
 - -> limitation of the depletion area.

WHY DEPLETED **CMOS SENSOR**

Why CMOS sensor

Why using commercial CMOS technology for monolithic pixel detectors is interesting. Some features/advantages ... using CMOS process lines

Why CMOS sensor

Why using commercial CMOS technology for monolithic pixel detectors is interesting. Some features/advantages ... using CMOS process lines

Usage of a matured commercial process technology

huge production capabilities (> 30 000 wafers/month)

cost per wafer low (interesting for large area)

turn around time \sim 3 months (fast supply / reaction times)

Much less elaborate module assembly process (e.g. no hybridization)

Lower module **cost** (factor **3-4** compared to hybrid pixel modules)

Thin monolithic modules (100 µm)

Pixel size of $50 \times 50 \mu m^2$ (same as hybrid) or smaller possible

Why depleted CMOS sensor (DMAPS)

Why using commercial CMOS technology for <u>depleted</u> monolithic pixel detectors is interesting. Some features/advantages ... using CMOS process lines

Why depleted CMOS sensor (DMAPS)

Why using commercial CMOS technology for <u>depleted</u> monolithic pixel detectors is interesting. Some features/advantages ... using CMOS process lines

Depleted CMOS sensor combines the compactness of CMOS sensor with the performance of hybrid planar silicon sensors

By using **high-voltage** compliant CMOS processes/design rules.

Electronics shielded from bias voltage

By using an **isolated deep well** that collects charge **and** includes both analogue and digital circuits -> monolithic pixel

The isolated deep well is biased up to 400 V giving a depletion depth of 200 µm Radiation tolerant in the bulk.

large signal and fast charge collection,

Sensors can be thinned to 50 µm without signal loss.

Sensors can operate in a high rate environment (< 25 ns)

What is needed to realize DMAPS?

"High" Resistivity Substrate (or epi layer) Wafers (100 Ω .cm – k Ω .cm)

"High" Voltage add-ons to apply 50 - 200 V bias

Multiple (4) nested wells (for full CMOS and for shielding)

from: www.xfab.com

I. Mandić et al.

Backside Processing

I. Mai

(for thinning and back bias contact application => thin modules with high field)

DMAPS concepts

High-radiation environment

=> fast charge collection => **depleted** sensitive layer => $d\sim\sqrt{\rho\cdot V}$

DMAPS concepts

High-radiation environment

=> fast charge collection => **depleted** sensitive layer => $d\sim\sqrt{\rho\cdot V}$

Large fill factor

- uniform field, short drift distance

- noise & speed (power) penalties
- cross-talk: dedicated pixel design needed

DMAPS concepts

High-radiation environment

=> fast charge collection => **depleted** sensitive layer => $d\sim\sqrt{\rho\cdot V}$

Large fill factor

- uniform field, short drift distance

- non-negligible C_{pw}
- noise & speed (power) penalties
- cross-talk: dedicated pixel design needed

- low noise & power

- dedicated efforts to enhance depletion

NEW ELECTRONICS DEVELOPMENT FOR THE PIXEL DETECTOR OF THE ATLAS ITK

RD53: New Read-Out Chip for ATLAS and CMS phase II pixel detectors.

Upgrade of the LHC

ATLAS ITK: Why a new tracker?

- A huge pile-up: 200 interactions per beam crossing!
 - ATLAS designed for 25 interactions
 - The new detector will allow to keep current performances in terms of tracking and vertexing, b-tagging...
- More difficult radiation environment:
 - Central layers should cope over lifetime with $> 2.10^{16} n_{eq}/cm^{-2} > 1 Grad$
 - vs. 100-200 Mrad design for current inner layers
- Better η coverage:
 - $\eta = 2.5 \rightarrow 4.0$
 - higher lepton acceptance
 - better pile-up rejection

The Inner Tracker Upgrade (ITK)

ATLAS biggest upgrade project

• An all silicon tracker, covering up to radius approx. 1m and extended tracking coverage $\eta = 4$.

Prototype double sided strip stave

• Reduced material (<1 X_0 up to $\eta \sim 3$)

- 4 layers Strip Detector.
- n+-in-p FZ and ABC130 ASIC
- Pixel detector:
 - 5 layers Pixel Detector.
 - Features:
 - Replaceable inner system.
 - Serial Powering.

ATLAS-ITK: Sensors / Read-Out-Chip

Various sensors options depending on location

<u>Inner system:</u>

- L0 and R0: 3D sensors
- L1 and R1: 100 μm thin planar Outer barrel and endcaps:
- L2-4 and R2-4: 150 μm thick planar

In L4: Option of using **Depleted monolithic CMOS sensor (DMAPS)**

- The sensor technology is chosen wrt several criteria:
 - **Radiation hardness**
 - Cost
 - **Production capability**

ATLAS-ITK: Sensors / Read-Out-Chip

Various sensors options depending on location

<u>Inner system:</u>

- L0 and R0: 3D sensors
- L1 and R1: 100 µm thin planar
 Outer barrel and endcaps:
- 12-4 and R2-4: 150 µm thick planar
- In L4: Option of using Depleted monolithic CMOS sensor (DMAPS)

- The sensor technology is chosen wrt several criteria:
 - Radiation hardness
 - Cost
 - Production capability

Hybrid FE / RD53 collaboration

 RD53 project: Design and develop pixel chips for ATLAS/CMS phase 2 upgrades, started in 2013

Baseline technology: TSMC 65nm CMOS

~100 people from 20 institutes :

- Bonn University
- CERN
- Fermilab
- INFN: Bari Bergamo-Pavia Milano Padova Perugia Pisa Torino
- **─** IN₂P₃ : CPPM − LAPP − LAL LPNHE
- LBNL
- New Mexico
- NIKHEF
- Prague IP/FNSPE-CTU
- RAL
 - Sevilla University

Hybrid FE / RD53 collaboration

 RD53 project: Design and develop pixel chips for ATLAS/CMS phase 2 upgrades, started in 2013

- Extremely challenging requirements for HL-LHC
 - Hit rates: 3 GHz/cm² (200 MHz/cm² in the current system) / ~220 hits/IC/bx
 - Small pixels: 50 x 50 μm² Low power Low mass
 - Radiation: 500 Mrad 10¹⁶ n_{eq}/cm² over 5 years
 - Inner layer to be changed after 5 years
 - Local memory for 500 bx
- Baseline technology: TSMC 65nm CMOS

~100 people from 20 institutes :

- Bonn University
- CERN
- Fermilab
- INFN : Bari Bergamo-Pavia Milano -Padova - Perugia - Pisa - Torino
- IN₂P₃ : CPPM − LAPP − LAL LPNHE
- LBNL
- New Mexico
- NIKHEF
- Prague IP/FNSPE-CTU
- RAL
 - Sevilla University

RD53: Final production IC development

RD53A chip half size prototype

Sensitive area : 2 cm x 1.18 cm \rightarrow 400 x 192 pixels of 50 x 50 μ m²

3 different Analog Front End flavors:

Synchronous, Linear, Differential

Submission August 2017

First chip tested December 2017

First bump-bonded chip tested April 2018

RD53: Final production IC development

RD53A chip half size prototype

Sensitive area: $2 \text{ cm x } 1.18 \text{ cm} \rightarrow 400 \text{ x } 192 \text{ pixels of } 50 \text{ x } 50 \text{ } \mu\text{m}^2$

3 different Analog Front End flavors:

Synchronous, Linear, Differential

Submission August 2017

First chip tested December 2017

First bump-bonded chip tested April 2018

- Development of the final production chips is ongoing (minor modifications)
 - ATLAS chip submission target July 2019 (20 mm × 21 mm)
 - CMS chip submission December 2019 (21.7 mm × 18 mm)
 - Both chips are synthesized from a common design framework

NEW ELECTRONICS DEVELOPMENT FOR THE PIXEL DETECTOR OF THE ATLAS ITK

Monolithic Depleted CMOS sensor (DMAPS) in the ITk

CPPM

DMAPS collaboration

Developing detectors for HL-LHC environment is actually **paving the road** for a general use of this technology

- Generating a collaborative effort of ~25 ATLAS ITK institutes
- Capable of attracting also non-ATLAS institutes and resources

under the Marie Skłodowska-Curie Actions

https://stream.web.cern.ch/

DMAPS collaboration

Developing detectors for HL-LHC environment is actually **paving the road** for a general use of this technology

- Generating a collaborative effort of ~25 ATLAS ITK institutes
- Capable of attracting also non-ATLAS institutes and resources

Exploring different solutions is paramount:

Every solution has pros and cons

→ avoid missing opportunities or delays by technical difficulties of one specific

solution

"Jožef Stefan" Ljubljana, Slovenij

BROOKHAVEN

WP6: Novel high voltage and resistive CMOS sensors

universität**bonn**

Yale University

NATIONAL ACCELERATORY

LIVERPOOL

STREAM, Smart Sensor Technologies and Training for Radiation Enhanced Applications and Measurement Innovative Training Network (ITN) under the Marie Skłodowska-Curie Actions https://stream.web.cern.ch/

Task force and working group

GOALS

Could provide an **advantageous replacement for hybrid pixels.**

Show that CMOS pixel sensors can be designed **radiation-hard** to at least 10¹⁵neq/cm² and 100 Mrad.

Choose suitable **technology** (and suitable vendor)

Optimize cell for fast and complete charge collection and simultaneous radiation tolerance

Design **monolithic full rad-hard** R/O architecture devices (complete (depleted) CMOS pixel detectors)

☐ HV/HR technologies

- HV CMOS
 - o AMS 350 nm
 - o AMS 180 nm
- HR CMOS
 - o LFoundry 150 nm
 - o Global Foundry 130 nm
 - o ESPROS 150 nm
 - o Toshiba 130 nm
 - o TowerJazz 180 nm
 - o IBM T3 130 nm
 - o STM 180 nm
 - ON Semiconductor 180 nm

■ SOI – CMOS Pixel

o XFAB 180 nm

Task force and working group

GOALS

Could provide an **advantageous replacement for hybrid pixels.**

Show that CMOS pixel sensors can be designed **radiation-hard** to at least 10¹⁵neq/cm² and 100 Mrad.

Choose suitable **technology** (and suitable vendor)

Optimize cell for fast and complete charge collection and simultaneous radiation tolerance

Design **monolithic full rad-hard** R/O architecture devices (complete (depleted) CMOS pixel detectors)

- ☐ HV/HR technologies
 - HV CMOS
 - AMS 350 nm
 - o AMS 180 nm
 - HR CMOS
 - LFoundry 150 nm
 - Global Foundry 130 nm
 - o ESPROS 150 nm
 - Toshiba 130 nm
 - o TowerJazz 180 nm
 - IBIVI 13 130 nm
 - o STM 180 nm
 - ON Semiconductor 180 nm
- □ SOI CMOS Pixel
 - o XFAB 180 nm

CPPM

The Matrix (Pixel Level)

- All of present CMOS sensor designs include for Each pixel
 - = CSA + discriminator + Hit Memory
 - Including analog test pulse
 - Including pixel mask
 - Diode or PMOS reset
 - Discriminator with edge output injected to double column pixel logic
 - Hit memory in active matrix
 - Control of bias current (individual or on chip level)

CMOS chip

AMS AtlasPix3

TJ Malta

TJ Monopix1

LF Monopix1

Pitch

50x150

36x36

36x40

50x250

[um x um]

Fill

Factor

Large

Small

Small

Large

The Matrix (Pixel Level)

- All of present CMOS sensor designs include for Each pixel
 - = CSA + discriminator + Hit Memory
 - Including analog test pulse
 - Including pixel mask
 - Diode or PMOS reset
 - Discriminator with edge output injected to double column pixel logic
 - Hit memory in active matrix
 - Control of bias current (individual or on chip level)

- Full matrix needs = 512x512 pixels
 - Cover active area ~18 x 20 mm² (assuming RD53 like coverage)
 - Coarse analog measurement
 - All pixel addresses with hits are (a)synchronously transmitted over high-speed bus to End-of-Column logic

CMOS RO	Architecture
AMS AtlasPix3	Synchronous (column drain)
TJ Malta	Asynchronous (Novel)
TJ Monopix1	Synchronous (FEI-3)
LF Monopix1	Synchronous (FE-I3)

Why AMS/TSI, LF and TJ foundries

AMS/TSI 180nm

- 3 (+1 option) wells (deepN/P) available for partial (full) CMOS implementation in matrix
- Free choice of HR substrate and repeatedly achieved very high substrate voltages without breakdown (>100V)
- Access to foundry simple
- Well established process and readily available engineering runs in already qualified process

Why AMS/TSI, LF and TJ foundries

AMS/TSI 180nm

- 3 (+1 option) wells (deepN/P) available for partial (full) CMOS implementation in matrix
- Free choice of HR substrate and repeatedly achieved very high substrate voltages without breakdown (>100V)
- Access to foundry simple
- Well established process and readily available engineering runs in already qualified process

LFoundry 150nm

- 4 wells (deepN/P) available for full CMOS implementation in matrix
- Free choice of HR substrate and repeatedly achieved very high substrate voltages without breakdown (>200V)
- Access to foundry simple (passive LF CMOS sensors market survey)
- Well established process and readily available engineering runs in already qualified process

Why AMS/TSI, LF and TJ foundries

AMS/TSI 180nm

- 3 (+1 option) wells (deepN/P) available for partial (full) CMOS implementation in matrix
- Free choice of HR substrate and repeatedly achieved very high substrate voltages without breakdown (>100V)
- Access to foundry simple
- Well established process and readily available engineering runs in already qualified process

LFoundry 150nm

- 4 wells (deepN/P) available for full CMOS implementation in matrix
- Free choice of HR substrate and repeatedly achieved very high substrate voltages without breakdown (>200V)
- Access to foundry simple (passive LF CMOS sensors market survey)
- Well established process and readily available engineering runs in already qualified process

TowerJazz 180nm

- DeepPwell available, unrestricted CMOS implementation in matrix
- Customer or TJ supplied HR wafers for depleted sensors
- Best established MAPS producer in HEP with >1000 wafers delivered to experiments, hence minimal risks for future production availability

DMAPS sensor development lines

Monolithic sensors with electronics all in one!

2 lines of development followed : (a) large electrode design / (b) small electrode design

DMAPS sensor development lines

Monolithic sensors with electronics all in one!

2 lines of development followed: (a) large electrode design / (b) small electrode design

LF or AMS/TSI processes

- <u>Pros</u>:
 - Full CMOS
 - Uniform field, short drift distance
 → radiation hardness (TID & NIEL),
 2.10¹⁵ n_{eq}.cm⁻² proven
 - HV reverse. bias > 300V possible (LF)
 - Back Side thinning and processing possible
- Cons:
 - Deep nwell Q collection
 - → big Capacitance (>200 fF)
 - → noise, power & crosstalk

DMAPS sensor development lines

Monolithic sensors with electronics all in one!

2 lines of development followed: (a) large electrode design / (b) small electrode design

LF or AMS/TSI processes

- Pros:
 - Full CMOS
 - Uniform field, short drift distance
 → radiation hardness (TID & NIEL),
 2.10¹⁵ n_{eq}.cm⁻² proven
 - HV reverse. bias > 300V possible (LF)
 - Back Side thinning and processing possible
- Cons:
 - Deep nwell Q collection
 - → big Capacitance (>200 fF)
 - → noise, power & crosstalk

(W. Snoeys et al., NIM A871 (2017) 90–96)

Modified TJ process

- Pros:
 - Full CMOS
 - Small capacitance (<10fF)
 → low noise & low power.
 - Vendor established at CERN
 - Thin detector possible.
- Cons:
 - Limited depletion, long drift distance
 → radiation hardness
 (need process modification)

LFoundry DMAPS prototyping line

CENTRE DE PHYSIQUE DES PARTICULES DE MARSEILLE

CCPD LF

- Subm. in **Sep. 2014**
- 33 x 125 μm² pixels
- Fast R/O coupled to FE-I4
- Standalone R/O for test
- Bonn/CPPM/KIT

LF-CPIX (DEMO)

- Subm. in **Mar. 2016**
- 50 x 250 μm² pixels
- Fast R/O coupled to FE-I4
- New Sensor Guard-Ring
- Standalone R/O for test
- Bonn/CPPM/IRFU

LF-Monopix1

- Subm. in **Aug. 2016**
- 50 x 250 μm² pixels
- Fast column drain R/O
- Bonn/CPPM/IRFU

LI THUHUPIXZ

- Being designed
- 50 x 150 μm² pixels
- Full height matrix
- Fast column drain R/O
- Bonn/CERN/CPPM/IRFU

CPPM LF-MONOPIX1

Column drain readout architecture

Similar to the current ATLAS pixel readout chip "FE-I3"

LF-MONOPIX1: Laboratory results

- Breakdown @ -280 V => up to ~ 300 μm depletion
- ToT calibrated with sources: ²⁴¹Am, terbium
- Gain 10 -12 μV/e⁻
- Typical ENC ~ 200 e⁻
- Tunable threshold down to 1400 e⁻
 - dispersion ~ 100e after tuning

ToT vs. Injection

Response to sources

LF-MONOPIX1: TID, NIEL performance

- X-ray irradiation up to 50Mrad
 - Irradiated and measured in room temperature
 - Gain degradation <5%
 - Noise increase ~25%
 - => higher leakage current after irradiation.
 - No significant difference between the CSA

Neutron irradiation

I.Mandić, et al., doi.org/10.1016/j.nima.2018.06.062

Normalized gain and ENC (LF-CPIX)

Depletion depth ~ 140 μ m after 2×10¹⁵ n_{eq} /cm²

LF-MONOPIX1: Telescope test beam

Non-irradiated

TH tuned by noise

Columns: 16-20

HV: -200V

Temp: dry ice

TH tuned by noise

Columns: 16-20

HV: -130V

Temp: dry ice

Timing performance...

TH tuned by noise

Columns: 16-20

HV: -200V

Temp: dry ice

LF-MONOPIX1: Proton irradiation

- Chip irradiated to 160 Mrad, 80 days room temperature annealing
- Measured at -12 °C, HV = -40 V
- NMOS pre-amplifier + Discriminator V2
 - Noise ~ 250 e-

The threshold dispersion can be tuned to ~ 150e-

CPPM

LF-MONOPIX1: I-V curves

- High breakdown voltage > 200 V (low T°)
 - Not influenced by backside thinning and processing
- Acceptable leakage increase after irradiation

Design towards LF-MONOPIX2

LF-MONOPIX2 circuit optimization

- Time walk
- Efficiency for thinned devices
- Sensor pixel size (smaller) and leakage current
- Electronic devices crosstalk
- Yield studies

MATF CMC (355 x	S	MATRIX NMOS (355 x 30)	
BUFFERING and BIASING STAGE			
R/O CTRL			
TRIGGER MEM CTRL			
TRIGGER MEMORY			
OUT FIFO + DTU			
DACs		SC	

Design goals:

- Matrix
 - Pixel size : **150μm x 50μm**
 - Fast and low power AFE
 - Enhanced ToT extraction
 - Full height approaching 2 cm

- **Enhanced BCID** distribution scheme
- Trigger memory
 - Same strategy as TJ-Monopix2
- Out FIFO and fast IO link (LVDS etc)
- Slow control same as LF-Monopix1
- Develop digital chip assembly flow & chip verification flow
- Submission before end of 2019

Design of large-scale demonstrators

TJ strategy: Design of two full-scale demonstrators to match ATLAS specifications for outer pixel layers

- The "MALTA" chip
 - Analog front-end based on a previous design (ALPIDE) for the ALICE experiment
 - Novel asynchronous readout architecture to reduce digital power consumption and increase hit rate capability

- The "TJ-Monopix" chip
 - Front-end similar to the "MALTA" chip
 - Uses the well-established column drain readout architecture (experience from "FEI-3" LF-Monopix design)

TJ MALTA: asynchronous architecture

- The TJ Malta is a 22 x 20 mm² full size demonstrator
 - 8 sectors with different pixel flavors
 - Fully clock-less matrix architecture
 - → low power
 - Charge information from time-walk
 - Pixel size 36.4 x 36.4 um²
 - 2-3 µm collection electrode
 - → small input capacitance
 - 3.4 4 um separation between electrode and electronics
 - → low cross-talk
 - 1 μW/pixel analog power (75 mW/cm²)

36.4 µm

TJ MALTA: asynchronous architecture

- The TJ Malta is groups of 2x8 pixels with pattern assignment to reduce data size from clusters
 - Front-end discriminator output is processed by a double-column digital logic
 - Pulse width adjustable between 0.5 ns and 2 ns
 - Data are transmitted asynchronously over high speed us to the end of column
 - At the periphery, an arbitration and merging logic resolves timing conflicts of simultaneous signals
 - Timing information is kept by dedicated bits
 - Each hit is represented by a 40 bit word

I. Berdalovic et al 2018 JINST 13 C01023

CPPM

measurement in test beam

Un-irradiated

97.1%

 $X [\mu m]$

W4 HV PSUB=-16V, PWELL=-0V, HV=30V

1200

900

600

300

TJ MALTA and TJ MONOPIX: results

98% in-time efficiency @ 300 e- threshold (uncorrected for 7.5 ns propagation delay)

98

94

90

86

82

78

I. Caicedo, Bonn,

summer 2018

450 50 25ns window start [ns]

 $X [\mu m]$

- Weakness understood: weak E field under electronics.
- Modification with (reactive!) founder → summer 2018 submission

20

Integration time [ns]

standard

front-end

enlarged

transistors

AMS/TSI DMAPS prototyping line

 Many prototypes since 2011. AMS 180nm processes no longer accessible. Development moved to TSI 180nm. TSI is very similar to AMS 180 nm.

- The last version is the ATLASPix3, a 20.2mm x 21mm chip size submitted in April 2019
 - Synchronous Column drain architecture
 - Pixel size : 150μm x 50μm
 - Matrix size: 132 x 372

CENTRE DE PHYSIQUE DES PARTICULES DE MARSEILLE

AMS/TSI DMAPS: ATLASPix1 results

Results (no radiations) Requirements:

- material budget:
 - \rightarrow 100 µm (50 µm possible)
- $< 200 \mu m$

- spatial resolution:
 - \rightarrow in y: RMS = 11.3 μ m pixel size = 130 μ m x 40 μ m
- $< 7 \mu m$

- timing resolution:
 - \rightarrow 6.8 ns at ~480e thres

< 10 ns

- efficiency:
 - \rightarrow above 99.7%
 - → no dead/masked pixels

> 99.7-99.9%

Conclusion

- After 10 years of R&D, the Monolithic depleted CMOS sensor technology is entering a state of becoming a true contender with hybrid pixels
- The actual low cost technologies are showing good results and performances on large signal and fast charge collection by using rad-hard small pixel, and reduced material cost.
- The DMAPS offers a cost effective solution for large area coverage

Conclusion

- After 10 years of R&D, the Monolithic depleted CMOS sensor technology is entering a state of becoming a true contender with hybrid pixels
- The actual low cost technologies are showing good results and performances on large signal and fast charge collection by using rad-hard small pixel, and reduced material cost.
- The DMAPS offers a cost effective solution for large area coverage BUT option to use DMAPS in ATLAS ITk L4 recently <u>dropped out</u>.
- The high level of development and the closeness to specifications was recognized, but concern is that depleted CMOS diverts attention from main hybrid-like solution at a time when schedule is tight and several challenges still lay ahead for the standard solution.

- The value of this technology for future applications makes no doubt
 - Work continues with other targets:
 - Future application in ATLAS?
 - CepC, FCC-ee, Belle experiment, future hadron circular collider?
 - Timing layers, imaging applications (Synchrotron radiation imaging, Medical imaging during proton therapy ...)
 - All contexts in which radiation hardness, high hit rate, speed is required.

Strong collaboration with our partners in various framework

(ACC, Bonn/CPPM/CERN/CEA-IRFU collaboration, CERN RD50...)