Evidence of a Resonant Structure in the $e^+e^- \to \pi^+ D^0 D^{*-}$ Cross Section between 4.05 and 4.60 GeV Phys. Rev. L 122, 102002 (2019) **Gu Shan** 2019.4.12 JC 103 report ## Introduction - Y(4260) was observed only in hidden-charm processes, while its mass is close to open-charm thresholds, studies of the open-charm production cross section in e^+e^- annihilation will provide important information on its properties. - The production of $e^+e^-\to\pi D\overline{D}^*$ is expected to be strongly enhanced above the nominal $DD_1(2420)$ threshold and could be a key for understanding existing puzzles with these Y states. - In this Letter, we report improved measurements of the production cross section of $e^+e^- \to \pi^+ D^0 D^{*-}$ at center-of-mass energies from 4.05 to 4.60 GeV using data samples taken at 84 energy points with the BESIII detector. ## **Event topology** > Charge-conjugate modes are implied, unless otherwise noted. ## Fit to the D^{*-} mass FIG. 1. Fit to the distribution of $RM_{cor}(D^0\pi^+)$ for the data sample at $\sqrt{s} = 4.5995$ GeV. The black dots with error bars are data, the solid line (blue) describes the total fit, the dashed line (red) describes the signal shape, and the dotted and dash-dotted lines (black) describe BKG1 and BKG2, respectively. The pink vertical lines mark the signal region. inferred by the invariant mass recoiling against the $D^0\pi^+$ system, $RM(D^0\pi^+)$ The signal region is defined as $$|RM_{cor}(D^0\pi^+) - \Delta M - m(D^{*-})| < 20 \text{ MeV}/c^2$$ ## Calculation of born cross sections Question from Xin: For the paper in equation 2, could you explain what does the "dress cross-section" mean? Answer : σ_{Born} is the observed cross section, when considering the correction factor for vacuum polarization, $\sigma_{Born} \times \frac{1}{|1-\mathbb{I}|^2}$, it is the so called dress crosssection, σ_{dress} . the correction factor for vacuum polarization ## Dressed cross section FIG. 2. Fit to the dressed cross section of $e^+e^- \rightarrow \pi^+ D^0 D^{*-}$, where the black dots with error bars are the measured cross sections and the blue line shows the fit result. The error bars are statistical only. The pink dashed triple-dot line describes the phase-space contribution, the green dashed double-dot line describes the R_2 contribution, and the light blue dashed line describes the R_1 contribution. TABLE II. The fitted parameters of the cross sections of $e^+e^- \to \pi^+ D^0 D^{*-}$. The uncertainties are statistical only. | Parameter | Solution I | Solution II | Solution III | Solution IV | |--------------------------------|--------------------------------|----------------|------------------|------------------| | c (MeV ^{-3/2}) | $(6.2 \pm 0.5) \times 10^{-4}$ | | | | | $M_1 \text{ (MeV/}c^2\text{)}$ | 4228.6 ± 4.1 | | | | | Γ_1 (MeV) | 77.0 ± 6.8 | | | | | $M_2 (\text{MeV}/c^2)$ | 4404.7 ± 7.4 | | | | | $\Gamma_2 \text{ (MeV)}$ | 191.9 ± 13.0 | | | | | $\Gamma_1^{el} \ (eV)$ | 77.4 ± 10.1 | 8.6 ± 1.6 | 99.5 ± 14.6 | 11.1 ± 2.3 | | Γ_2^{el} (eV) | 100.4 ± 13.3 | 64.2 ± 8.0 | 664.2 ± 80.0 | 423.0 ± 47.0 | | ϕ_1 (rad) | -2.0 ± 0.1 | 3.0 ± 0.2 | -0.9 ± 0.1 | -2.2 ± 0.1 | | ϕ_2 (rad) | 2.1 ± 0.2 | 2.5 ± 0.2 | -2.3 ± 0.1 | -1.9 ± 0.1 | Question from Amit: what is R1 and R2 in Fig-2?Can you please explain Fig-2 a little bit? **Answer:** Two enhancements obtained from the fit result of the cross section. Question from Yuhang: In FIG2, what's meaning of the phase-space contribution? • Answer: For each energy point, we generate MC samples of the signal process according to phase space (PHSP MC). In <u>dynamical system theory</u>, a **phase space** is a <u>space</u> in which all possible states of a <u>system</u> are represented, with each possible state corresponding to one unique point in the phase space. For <u>mechanical systems</u>, the phase space usually consists of all possible values of <u>position</u> and <u>momentum</u> variables. The concept of phase space was developed in the late 19th century by <u>Ludwig Boltzmann</u>, <u>Henri Poincaré</u>, and Willard Gibbs. - Question from Ryuta: could you explain about the relationship of those ? - 1) Y(4260) without open charm channel decay (==dip) and DD1bar(2420) molecule interpretation - 2) observation of open charm channel ($\pi^+ D^0 D^{*-}$) with Y(4220) - Answer: We didn't observe Y(4260), it is just observed in the hidden-charm processes. DD1bar(2420) molecule model is proposed as an interpretation of the Y(4260). We observed the Y(4220) in this paper. - Phys. Rev. D 90, 074039 (2014). - Phys. Rev. Lett. 111, 132003 (2013); - Phys. Rev.D 94, 054035 (2016).