Flavour Anomalies: A Review JC110 Paper

Amit Pathak

Institute of High Energy Physics Chinese Academy of Sciences

June 14, 2019

Table of Contents

- 1 What is Flavour
 - and how is that useful
 - with a focus on b decays
- \square Lepton Flaour in b decays
- 3 Charged current decays
- 4 Neutral current decays: the $b \rightarrow sll$
- 5 Prospects
- 6 Questions

Introduction

- Flavour is a property that distinguishes the various fermions of the Standard Model.
- SM successful in describing physics up to the EW scale.
- But not complete!
 - \blacksquare ν oscillations
 - \blacksquare darkmatter
 - \blacksquare matter antimatter asymmetry
- Look for New Physics:
 - **directly**, with **high**- p_T searches
 - **directly**, with **intense** beams
 - indirectly, with flavour physics

Flavour Structure

- In the SM, misalignment in between:
 - Yukawa couplings
 - Weak Forces
- **2** The 3×3 CKM matrix generates a flavour structure.
- ${f 3}$ V_{CKM} hierarchical and nearly diagonal
 - \blacksquare 3rd generation especially isolated
 - lacktriangle tree-level b decays suppressed, long b lifetime.
 - b-baryon decays sensitive to effects from **new virtual particles**
 - access to much larger mass range w.r.t. direct searches.

Lepton Flavour in the Standard Model

Lepton generations differ only in mass.

- I SM implies universality of lepton flavour (LU): amplitude of processes with e , μ , τ identical (except phase space)
 - \blacksquare e.g. the decay $W \to l \nu$
- 2 LU will established in the decay of light mesons, e.g. $\pi \to l \nu$, $K \to \pi l l$, $J/\psi \to l l$
- f 3 Lepton Flavour Number is conserved (for massless u): no $l_1\longleftrightarrow l_2$
- stringent limits on LFV decays:
 - $\mu \to e \gamma \times (B \lesssim 10^{-13})$ [Eur. Phy. J.C76(2016)8, 434]
 - $K \to \pi e \mu \times (B \lesssim 10^{-11})$ [Phys.Rev. D72(2005)01 2005]
- **5** LUV or LFV \rightarrow unknown physics not accounted for:
- 6 some SM extensions include particles that can cause LUV and/or LFV(e.g. LQ, Z')

Lepton Flaour in b decays

- **II** Semileptonic decays (**CC**): " β decays" of B hadrons.
- \blacksquare tree level, large B few %
- lacksquare strong and weak part factorize o clean SM predictions
- Rare Decays (NC:)great benchmarks for the SM
- **5 FCNC** can only occur in loops: $B \ 10^{-7}$ 10^{-6}
- 6 new particles can enhance SM-suppressed amplitudes

Lepton Flaour in b decays

- **II** Semileptonic decays (**CC**): " β decays" of B hadrons.
- f 2 tree level, large B few %
- lacksquare strong and weak part factorize o clean SM predictions
 - \blacksquare hints of LUV in $b \rightarrow cl\nu$
- Rare Decays (NC:)great benchmarks for the SM
- **5 FCNC** can only occur in loops: $B~10^{-7}$ - 10^{-6}
- 6 new particles can enhance SM-suppressed amplitudes
 - lacksquare anomalies in suppressed b o sll transition

Lepton Universality in $b \to c l \nu_{l}$

Abundant $b \to c l \nu$ samples at LHC and B factories!

- $lue{1}$ strong and weak part factorize o $oldsymbol{\mathsf{clean}}$ theory prediction
- **2** hadronic and experimental uncertainties cancel in ratios of B's
- f 3 Standard Model: amplitude differ only because $m_ au\gg m_{e,\mu}$
- $\mathbf{4} \ \tau/\mu$: consistent **deviation** observed by 3 experiments

LHCb: R_{D^*} Muonic

- **II** With $\tau \to \mu\nu\nu$: **same** visible final state, with 1-3 neutrinos
- **2** 3D fit to **kinematic variables** to seperate μ from au
- $R_{D^*} = 0.336 \pm 0.027 \pm 0.030$, 2.1 σ above the SM
 - See Figure-2 (First two plots)

LHCb: R_{D^*} hadronic

- $oxed{1} au o \pi\pi\pi
 u$: normalize to $B o D^*\pi\pi\pi$
- use known ratio
 - $B \ (B \to D^*\pi\pi\pi) \ / \ B \ (B \to D^*\mu\nu)$ to calculate R_{D^*}
- \blacksquare additional source of uncertainty (external B's)
- huge BG from prompt decays
- 5 \rightarrow require displacement of au
- 6 3D fit of Kinematic variables
- $m{7} R_{D^*} = 0.286 \pm 0.019 \pm 0.025 \pm 0.021$, $m{1}_{m{\sigma}}$ above the SM
 - See Figure-2 (plots (a) and (b))

LHCb: R_{D^*} combination

- **II** LHCb averages: 2.2σ above the SM prediction
- many nice measurements from BaBar and Belle
- $oldsymbol{3}$ R_{D^*} world average: $oldsymbol{3.4\sigma}$ above SM
- 4 combined with R_{D^*} : 4.1 σ
- new theory calculations seem to decrease tension
- Incomparison of the second state of the second seco
 - See Figure-1

- $\blacksquare b o sll$ is a FCNC transition, only possible at loop level in the SM
- f 2 NP effects can be sizeable compared to the b o sll SM amplitude.
- This transition is LFU in the SM
- 4 study b o sll search for new physics particles that distinguish between lepton flavours
- many interesting deviations reported
- 6 none at the 5σ level

$b \rightarrow sll$ as a test for the SM

- measure decay rates, angular distributions etc.
- 2 to which new particles could contribute
- now to parametrize all possibilities?
- model-independent approach:
 - $\blacksquare \ L \propto \Sigma C_i O_i$, $C_i \equiv C_i^{SM} + C_i^{NP}$ "Wilson Coefficients"

- f 1 many interesting anomalies in b o cl
 u and b o sll
- some proposed decay channels currently working in BESIII too.

Xin's Question

Could you explain more about figure-6, and why "..has the potential of turning the anomalies into a groundbreaking discovery"?

Answer: we can discuss about this together.

Ryuta's Question

Could you explain what is the "optimized quantities Pi" mentioned in 3.2(and Fig.6)?

Answer: There are several observables with the combinations of spherical harmonics and the q^2 dependent angular observables. They all comprises with with CP-even (S_i) and CP-odd (A_i) observables, and with Wilson Coefficients. From these observables, optimised quantities $P_i^{(')}$ can be constructed and are well explained in the reference paper [arXiv:1512.04442] (page-3).

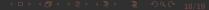
Yuzhen's Question

In Figure-2, what is the term "combinatorial"?

Answer: This is the combined distribution of all the possible decay modes by leaving the background.

Meaning of this word: relating to the selection of a given number of elements from a larger number without regard to their arrangement.

Dengfeng's Question


Can we do something like this on BESIII?

Answer: Yes! Already proposed by professor Li Haibo arXiv: 1612.01775 and Professor Jusak Tandean in their papers arXiv: 1901.10447.

For more details look Kai's presentation :

https://indico.ihep.ac.cn/event/9325/contribution/29/material/slides/0.pd

page-4 [experimental status]

The End