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Fig. 1. Inductively-pumped gas laser. 
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Expressions for the temperature dependence of the carrier mean free path for optical phonon scattering and 
the mean energy loss per collision are presented which predict avalanche multiplication as a function of electric 
field for any operating temperature once the appropriate parameters have been determined at a single tempera­
ture. This has been verified for electrons in Si by the correlation of measurements at 300oK, 213°K, and lOO°K. 
The temperature dependence of the breakdown voltages of a variety of abrupt and linear-graded Si and Ge p-n 

junctions has also been predicted. The fractional change in breakdown voltage with increasing temperature is 
predicted to decrease with increased doping concentration and, for the same breakdown voltage, to be less for 
linear-graded junctions than for abrupt junctions. 

Room-temperature secondary ionization rates for 
electrons and holes have been measured by Miller 
in Ge,1 Lee et al. in Si,2 Logan and White in GaP,3 
and Logan and Sze in GaAs and Ge.4 The depend­
ence of charge carrier ionization probability per unit 
distance traveled, lX, on the electric field, E, can be 
described in terms of Baraff's theory; using three 
parameters, Er , the Raman optical phonon energy, 
E;, the ionization energy, and A, the carrier mean 
free path for optical phonon generation. E; values 
=3Eg/2 where Eg is the band gap energy appear 
most appropriate.2- 4,6 The remaining adjustable 
parameter is A. Average values of A obtained from 
Baraff's original approach are given in Table I as 
A(uncorrected)' A more rigorous approach would in­
clude the effects of both optical phonon generation 
and absorption rather than generation alone. As a 
first approximation, the average energy lost per 
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collision, (Er ), can be used in place of Er in Baraff's 
theory. This is important for Ge and GaAs because 
both semiconductors have Er (refs. 7 and 8) values 
not much larger than kT for T - 3000K (cf. Table I). 

For electrons with an energy E > Er , and a density 
of states at energy E which does not vary rapidly 
over an energy increment ±Er , 

(Er)/Er = (2N + 1)-1 = tanh (Er/2kT) = A/Ao , (1) 

Table I. Optical Phonon Mean Free Paths. 

Si 
Ge GaP 

I 
GaAs 

Hole Electron 

.036 

A(uncorrected) (A) 80 40 
A(3000K) (A) 65 38 
Ao(A) 105 47 

.063 

65 
62 
76 

.036 .05 

45 
35 
58 

38 
32 
42 
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where N is the number of phonons per mode of 
vibration of energy Er, and Ao is the low temperature 
limit of the mean free path. lo If the density of states 
is parabolic and nonpolar optical phonons are in­
volved, A is independent of energy for E ~ Er • For 
polar optical phonons, as found in GaAs and GaP, 
A should increase with energy. I I The analysis should 
then determine an average mean free path. Note 
that 

(2) 

Since I/A is the number of collisions per unit dis­
tance traveled by a charge carrier, the energy lost 
per unit path length is independent of the tempera­
ture. 

Figure 1 shows Baraff's predicted values of aA as 
a function of deEA for two values of ErIE;. The low 
temperature value of ErIE; for Ge is 0.036. When 
generation and absorption are considered, the Baraff 
curve for ErIE; = 0.022 should be appropriate at 
room temperature. The experimental data due to 
Miller/ and Logan and Sze,4 fit both curves with 
different electron and hole mean free paths for 
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Fig. 1. Ionization rate a, as a function of electric field E. 
Legend: .&,O,D-Logan and Sze4 ; e,6-Miller'; --- Baraff (low 
temperature approx.); - present approach. 

different junctions. The differences in A for the 
same ErIE; have been attributed to crystal imperfec­
tions.4 The A and 11.0 values [from Eq. (1)] obtained 
for Ge, Si, GaAs, and GaP are listed in Table 1. The 
11.0 values are considerably larger, and the A'S smaller 
than the room temperature uncorrected values. 

Once 11.0 is known, Eq. (1) predicts A, (Er ), and 
thus the Baraff normalizing parameters at any 
temperature. Figure 2 shows the resultant unnor­
malized plots of ionization rate vs electric field for 
electrons in Si at 100oK, 213°K, and 400oK, and 
experimental ionization rates at 1000 K and 213°K.12 
The theoretical predictions use the 11.0 values in 
Table 1. The agreement at both lOOOK and 213°K 
is satisfactory. This further confirms the funda­
mental significance of A as a mean free path. 

These results may be understood qualitatively as 
follows. In the low-field region the ionization rate is 
strongly temperature dependent because the ioniz­
ing carriers travel several mean free paths without 
a collision. In the high-field region a greater frac­
tion of the carriers produces ionization and the 
energy loss per unit distance traveled is more sig­
nificant. This is less temperature sensitive because 
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Fig. 2. a vs liE for electrons in Si at selected temperatures. 
The data points are experimentaI." The curves are derived 
from the room temperature data. 
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the energy lost per unit path length along the ran­
dom walk of the carrier is independent of the 
temperature [cf. Eq. (2)]. 

To facilitate numerical analysis, Baraff's curves 
can be represented by the following approximation: 

{

(l1.5r2 - 1.17r + 3.9 X 1O-4)x2j 
aA = exp (46r 2 - 11.9r + 1. 75 X 1O-2)x 

- 757r2 + 75.5r - 1.92 
where 

(3) 

Errors in fitting Baraff's curves are within ±2% over 
the range 0.01 < r < 0.06 and 5 < x < 16 (cf. Fig. 3). 

Predicted values of VBIV B(3000K) for abrupt junc­
tions in Ge and Si are shown in Fig. 4. The values of 
VB at 3000 K have been published previously.13 Also 
shown in Fig. 4 are predicted values of VBIVB(3000K) 
for Si and Ge linear-graded junctions which have 
the same room temperature breakdown voltage as 
abrupt junctions with doping of 1015 cm-3. For the 
same doping profiles, the predicted percentage 
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Fig. 3. Universal BarafI curves (solid lines) and analytical 
approximations thereto (dashed line). 
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Fig. 4. Breakdown voltage vs temperature for Si and Ge 
p-n junctions. VB(3000K) is 2000, 330, and 60 V for Si and 950, 
150, and 25 V for Ge for dopings of 10", 10'5, and 10'6 cm-3 

respectively, The linear-graded junctions have VB(3000K) the 
same as those for doping of 10'5 cm-3, 

change in VB with temperature is about the same 
for GaAs and Ge or GaP and Si junctions. 
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