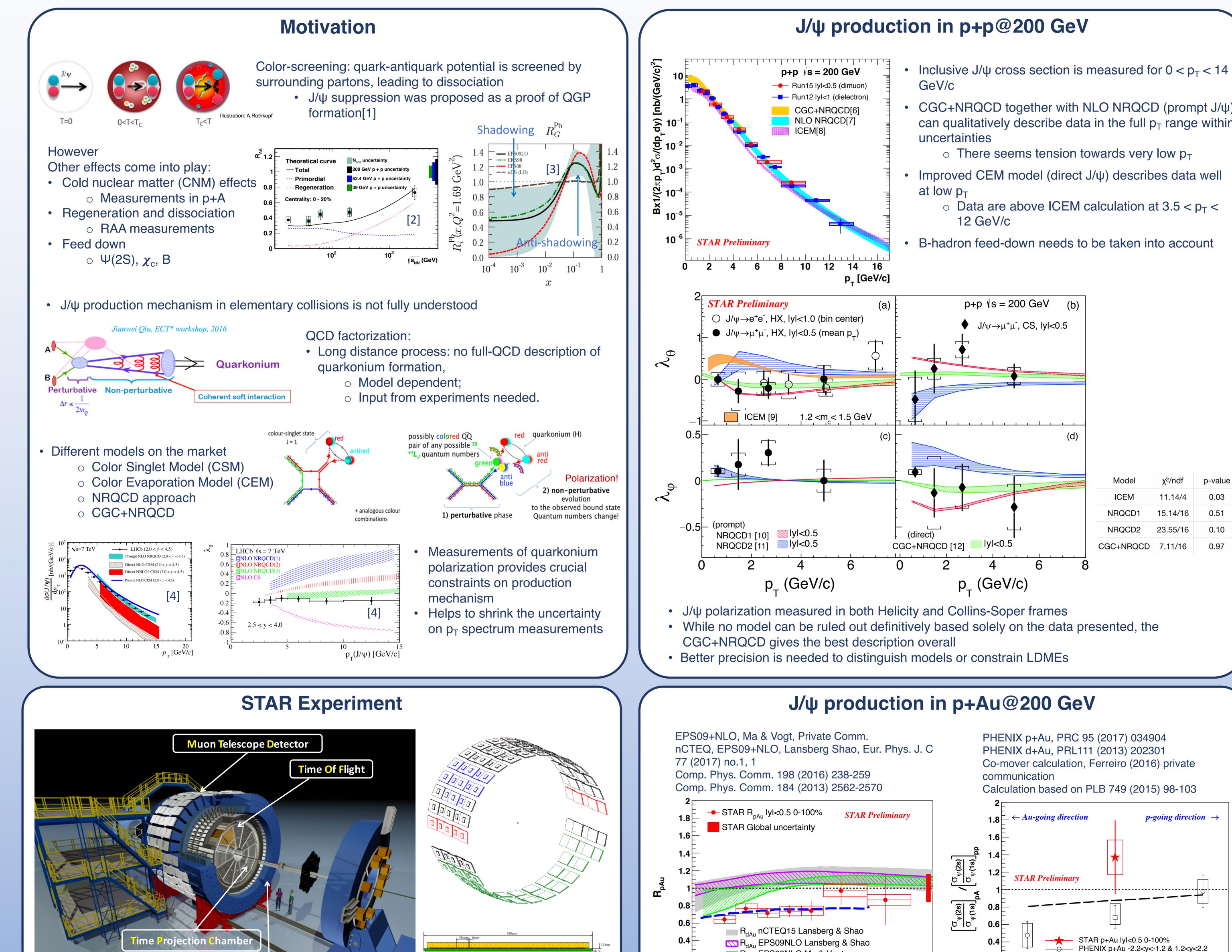
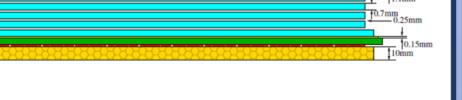
J/ψ production measurements in p+p and p+A collisions at $\sqrt{s_{NN}}$ = 200 GeV through the di-muon channel at STAR

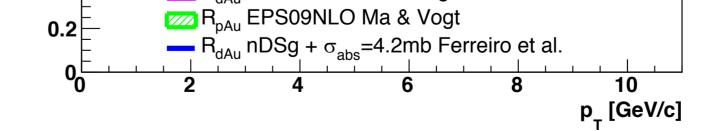
Zhen Liu

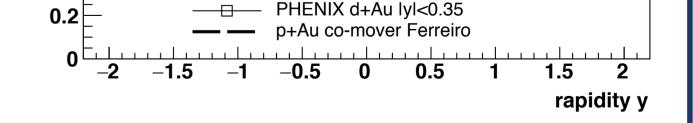

University of Science and Technology of China

State Key Laboratory of Particle Detection and Electronics

Abstract


Quarkonium production is an important tool to study the properties of the Quark-Gluon Plasma (QGP) formed in relativistic heavy-ion collisions. In particular, suppression of the J/ψ meson production due to the color-screening effect was proposed as a direct evidence of the QGP formation. However, interpretation of the J/ψ suppression in heavy-ion collisions requires knowledge of cold nuclear matter effects and will benefit from a better understanding of the J/ψ production mechanism. By comparing J/ψ production cross-section and polarization in p+p and p+Au collisions, the cold nuclear matter effects can be studied in detail. Moreover, J/ψ polarization is sensitive to the J/ψ production mechanism, and its measurement can help distinguish among different models. The STAR experiment at RHIC recorded large samples of p+p and p+Au collisions at $\sqrt{s_{NN}}$ = 200 GeV for charmonium studies utilizing the trigger provided by the Muon Telescope Detector. In this poster, we will present the recent measurements of the J/ψ production in p+p collisions. The results will be compared to model calculations. Furthermore, we will present measurements of the nuclear modification factor for J/ψ over a broad kinematic range in p+Au collisions, to quantify the cold nuclear matter effects.


- CGC+NRQCD together with NLO NRQCD (prompt J/ψ) can qualitatively describe data in the full p_T range within

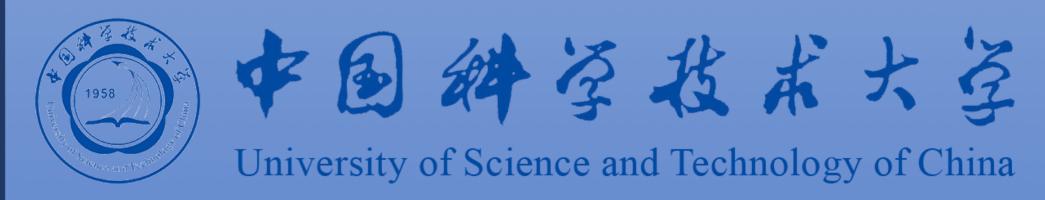

中国科学技术大学

- Top right: A schematic view of the entire Muon Telescope Detector (MTD) system. MTD covers 45% in φ and $|\eta| < 0.5$. It is used to trigger on and identify muons which emit less Bremsstrahlung radiation compared to electrons.
- Bottom right: A schematic side-view of the Multi-gap Resistive Plate Chambers with long readout strips (LMRPC) used in the MTD design: time resolution ~100 ps and spatial resolution ~1-2 cm^[5].

- First J/ ψ R_{pAu} measurement at RHIC
- Model calculations with only nPDF effect can touch the upper limit of data within uncertainties
- Data favor a model calculation including an additional nuclear absorption effect on top of the nPDF effect

• First $[\sigma_{\psi(2S)} / \sigma_{\psi(1S)}]_{pAu} / [\sigma_{\psi(2S)} / \sigma_{\psi(1S)}]_{pp}$ measurement at mid-rapidity at RHIC

$1.37 \pm 0.42(\text{stat}) \pm 0.19(\text{sys})$


References

[1] T. Matsui and H. Satz, Physics Letters B 178 (1986) 416 [2] [STAR Collaboration] Physics Letters B 771 (2017) 13–20 [3] Ferreiro et al., Phys. Rev. C 81 (2010) 064911 [4] A. Andronic et al., Eur. Phys. J. C. 76 (2016) 107 [5] C. Yang et al. Nuclear Instruments and Methods in Physics Research A 762 (2014)1–6 [6] Ma & Venugopalan, Phys. Rev. Lett 113 (2014) 192301

[7] Shao et al., JHEP 05 (2015) 103

[8] Ma & Venugopalan, Phys. Rev. Lett 113 (2014) 192301 [9] V. Cheung and R. Vogt, Phys. Rev. D 98 (2018) 114029 [10] Y. Ma et al., JHEP12, 57 (2018)

[11] Hong-Fei Zhang et al. Phys. Rev. Lett 114 (2015) 092006 [12] Bin Gong et al. Phys. Rev. Lett 110 (2013) 042002

