

原子核奇特转动结构的理论探索

亓斌 山东大学 (威海)

◆引言

◆手征和赝自旋对称性共存的首次研究◆四把剪刀机制的反磁转动的首次研究◆三轴形变参数对Wobbling激发的影响

引言

◆原子核转动激发的研究一首是后子坛物理学重要的分支之一。

Aage Niels Bohr

Ben Roy Mottelson

Leo James Rainwater

引言

◆ 在20世纪60年代,原子核的高自旋态(自旋量子数大于10的核态)的实验 观测成为可能,从而形成丰富多彩的核结构现象。

引言

 $2 \vec{R}$

◆ 近年来一些奇特转动模式成为理论和实验探索的热点问题。部分如下: 反磁转动

 \vec{R} 2

 J_{π}

jπ

◆引言

◆手征和赝自旋对称性共存的首次研究◆四把剪刀机制的反磁转动的首次研究◆三轴形变参数对Wobbling激发的影响

引言: 手征双重带

◆原子核的手征对称性于1997年首次在理论上预言,具有三轴形变的原子核在转动时可能实现手征性——手征双重带.

实验信号:两条宇称 相同能级近简并的ΔI =1的转动带,即手征 双重带.

手性原子核的研究进展

截止到目前为止,实验上已经在四个核区观测到了40多例手征候选核。

引言: 赝自旋双重带

赝自旋对称性最初于1969年提出. Arima PLB 30, 517 (1969). Hecht NPA137, 129 (1969).

赝自旋双态:

n - 1, l + 2, j = l + 3/2n, l, j = l + 1/2

重新定义量子数: $\tilde{n} = n - 1, \tilde{l} = l + 1, j = \tilde{l} \pm 1/2$

赝自旋双态: $\left(\tilde{n}, \tilde{l}, j = \tilde{l} \pm 1/2\right)$

H. Z. Liang et al., Phys. Rep. 570 1 (2015).

引言: 赝自旋双重带

- ◆理论上一个形变的原子核,如果价核子占据互为赝自旋对称的轨道上, 转动之后将会形成两个近简并的转动带,这样的双带被称为赝自旋双重
 S.Y. Wang, Scientia sinica physica, Mechanica & Astronomica 46,1 (2016)
- ◆实验上已经在110,130,190核区建议了几个赝自旋双带的候选带。
 - ¹⁰⁸Tc: Q. Xu et al., Phys. Rev. C 78, 064301 (2008)
 ¹¹⁸Sb: S. Y. Wang et al., Phys. Rev. C 82, 057303 (2010)
 ¹²⁸Pr:C. M. Petrache et al., Phys. Rev. C 65, 054324 (2002).
 ¹⁸⁶Ir: M. A. Cardona et al., Phys. Rev. C 55, 144 (1997).
 ¹⁹⁵Pt: P. Petkov et al., Phys. Rev. C 76, 044318 (2007).

¹⁰⁵Ag能级纲图

13

J. Timar, et al., Phys. Rev. C 76, 024307 (2

¹⁰⁵Ag能级纲图

¹⁰⁵Ag能级纲图

引言

- ◆ 近年来,协变密度泛函理论(CDFT)和粒子转子模型(PRM)已成功用于 描述原子核的手征对称性和赝自旋对称性。
- ◆ 绝热和组态固定约束的三轴协变密度泛函理论可以自洽得到组态和三轴 形变。
- ◆目前已发展的多粒子转子模型(MPRM)可以处理多粒子组态的手征双重带。

基于以上考虑,我们将采用绝热和组态固定约束的三轴协变密度泛函理论 (CDFT) 和多粒子转子模型(MPRM)研究¹⁰⁵Ag中的近简并的三重带,进而探 索可能的手征对称性和赝自旋对称性共存。

理论框架

• 绝热和组态固定约束的三轴密度泛函理论(CDFT)

J. Meng et al., Phys. Rev. C 73, 037303 (2006), J. Peng et al., Phys. Rev. C 77, 024309(2008).
J. M. Yao et al., Phys. Rev. C 79, 067302(2009). Li et al., Phys. Rev. C 83, 037301 (2011).
B. Qi et al., Phys. Rev. C 88, 027302(R) (2013). Li, Phys. Rev. C 97, 034306 (2018).
B. Qi et al., Phys. Rev. C 98, 014305 (2018).

▶ 多粒子转子模型(MPRM)

B. Qi et al., Phys. Lett. B 675, 175 (2009).A. D. Ayangeakaa et al., Phys. Rev. Lett. 110, 172504 (2013).I. Kuti et al., Phys. Rev. Lett. 113, 03 (2014)

理论框架

多粒子转子模型哈密顿量:

$$H = \hat{H}_{coll} + \hat{H}_{intr}$$

集体部分:
$$H_{coll} = \sum_{1}^{3} \frac{\hat{R}_{i}^{2}}{2\mathcal{J}_{i}} = \sum_{1}^{3} \frac{\hat{I}_{i}^{2} - \hat{j}_{i}^{2}}{2\mathcal{J}_{i}}$$
内禀部分:

$$\hat{H}_{intr} = \sum_{\nu} \varepsilon_{p,\nu} a^+_{p,\nu} a_{p,\nu} + \sum_{\nu'} \varepsilon_{n,\nu'} a^+_{n,\nu'} a_{n,\nu'}$$

价核子哈密顿量用单-j哈密顿量给出: $h_{sp} = \pm \frac{1}{2} C \{ \cos \gamma (j_3^2 - \frac{j(j+1)}{3}) + \frac{\sin \gamma}{2\sqrt{3}} (j_+^2 + j_-^2) \}$ 对于z个质子和n个中子的体系,内禀波函数 $|\varphi\rangle = (\prod_{i=1}^{z_1} a_{p,\nu_i}^{\dagger}) (\prod_{i=1}^{z_2} a_{p,\mu_i}^{\dagger}) (\prod_{i=1}^{z_1} a_{p,\nu_i'}^{\dagger}) (\prod_{i=1}^{z_2} a_{p,\mu_i'}^{\dagger}) |0\rangle$

Bohr, Mottelson, Nuclear Structure, Vol. 2 (1975) ; QI, PLB (2009)

理论框架

体系波函数:
$$|IM\rangle = \sum_{K\varphi} c_{K\varphi} |IMK\varphi\rangle$$

 $|IMK\varphi\rangle = \frac{1}{\sqrt{2(1+\delta_{K0}\delta_{\varphi,\bar{\varphi}})}} (|IMK\rangle|\varphi\rangle + (-1)^{I-K}|IM-K\rangle|\bar{\varphi}\rangle)$

约化电磁跃迁几率:

$$B(\sigma\lambda, I' \to I) = \frac{1}{2I+1} \sum_{\mu M} \left| \langle IM | \hat{M}(\sigma\lambda, \mu) | I'M' \rangle \right|^2$$

$$\hat{M}(M1,\mu) = \sqrt{\frac{3}{4\pi}} \frac{e}{2Mc} \Big[(g_p - g_R) \hat{j}_{p\mu} + (g_n - g_R) \hat{j}_{n\mu} \Big]$$

$$\hat{M}(E2,\mu) = \sqrt{\frac{5}{16\pi}}\hat{Q}_{2\mu}$$

B. Qi et al., Phys. Lett. B 675, 175 (2009).A. D. Ayangeakaa et al., Phys. Rev. Lett. 110, 172504 (2013).I. Kuti et al., Phys. Rev. Lett. 113, 03 (2014)

计算细节

CDFT计算细节 采用相互作用NL3; (n0f, n0b) =(12, 10), 忽略对关联, MPRM计算细节 **>组态**: $\pi g^{-1}_{9/2} \otimes v h_{11/2} g^{-1}_{7/2}, \pi g^{-1}_{9/2} \otimes v h_{11/2} d^{-1}_{5/2}$ ➢形变参数: β=0.23, γ = 30° ▶转动惯量: **9**=32ħ²/MeV ▶ 内禀电四极矩: Q₀=2.62eb ▶科里奥利减弱因子ζ=0.85 ▶g因子,g_R=Z/A=0.448, $Rg_p(g_{9/2}) = g_p(g_{9/2}) - g_R = 1.261 - 0.448 = 0.813$ $Rg_n(h_{11/2}) = g_n(h_{11/2}) - g_R = -0.209 - 0.448 = -0.657$ $Rg_n(d_{5/2}) = g_n(d_{5/2}) - g_R = -0.459 - 0.448 = -0.907$ $Rg_n(g_{7/2}) = g_n(g_{7/2}) - g_R = 0.255 - 0.448 = -0.193$

CDFT计算位能曲线

CDFT计算

	Configuration		E_{tot}		$E_x(\text{cal.})$	$E_x(\exp.)$
State	Valence nucleons	Unpaired nucleons	(MeV)	(eta,γ)	(MeV)	(MeV)
a	$\pi g_{9/2}^{-3} {\otimes} u (g_{7/2}^6 d_{5/2}^2)$	$\pi g_{9/2}^{-1}$	-894.16	(0.18, 0.02)	0	
b	$\pi(g_{9/2}^{-2}p_{1/2}^{-1}) \otimes u(g_{7/2}^{6}d_{5/2}^{2})$	$\pi p_{1/2}^{-1}$	-894.10	(0.20, 13.5)	0.06	0
c	$\pi(g_{9/2}^{-2}g_{7/2}^1p_{1/2}^{-2}) \otimes u(g_{7/2}^6d_{5/2}^2)$	$\pi g_{7/2}^1$	-891.60	(0.25, 21.6)		
d	$\pi(g_{9/2}^{-3}g_{7/2}^2p_{1/2}^{-2}) \otimes \nu(g_{7/2}^4d_{5/2}^2h_{11/2}^2)$	$\pi g_{9/2}^{-1}$	-890.81	$(0.35,\!10.5)$		
e*	$\pi g_{9/2}^{-1} p_{1/2}^{-2} \otimes \nu (g_{7/2}^5 d_{5/2}^2 h_{11/2}^1)$	$\pi g_{9/2}^{-1} \otimes u h_{11/2}^1 g_{7/2}^{-1}$	-891.70	(0.23, 34.9)	2.46	$2.47\star$
f*	$\pi g_{9/2}^{-1} p_{1/2}^{-2} \otimes \nu (g_{7/2}^6 d_{5/2}^1 h_{11/2}^1)$	$\pi g_{9/2}^{-1} {\otimes} u h_{11/2}^1 d_{5/2}^1$	-891.06	(0.23, 26.5)	3.10	2.62^{+}
g*	$\pi g_{9/2}^{-1} p_{1/2}^{-2} \otimes \nu (g_{7/2}^6 h_{11/2}^1 h_{11/2}^1)$	$\pi g_{9/2}^{-1} \otimes \nu h_{11/2}^1 h_{11/2}^1$	-890.22	$(0.25,\!38.5)$	3.94	3.91‡
+ 带C的带头白旋 $I^{\pi} = 15/9^{-}$ 的激发能 [169]						

* 帝C的带头自旋 $I^{\pi} = 15/2$ 的激发能 [162], † 带D的带头自旋 $I^{\pi} = 15/2^{-}$ 的激发能 [162],

‡带E的带头自旋 $I^{\pi} = 23/2^+$ 的激发能 [162]。

J. Timar, et al., Phys. Rev. C 76, 024307 (2007)

CDFT计算

	Configuration		E_{tot}		$E_x(\text{cal.})$	$E_x(\exp.)$
State	Valence nucleons	Unpaired nucleons	(MeV)	(eta,γ)	(MeV)	(MeV)
a	$\pi g_{9/2}^{-3} {\otimes} u (g_{7/2}^6 d_{5/2}^2)$	$\pi g_{9/2}^{-1}$	-894.16	(0.18, 0.02)	0	
b	$\pi(g_{9/2}^{-2}p_{1/2}^{-1}) \otimes u(g_{7/2}^{6}d_{5/2}^{2})$	$\pi p_{1/2}^{-1}$	-894.10	(0.20, 13.5)	0.06	0
c	$\pi(g_{9/2}^{-2}g_{7/2}^1p_{1/2}^{-2}) \!\otimes\! \! u(g_{7/2}^6d_{5/2}^2)$	$\pi g_{7/2}^1$	-891.60	(0.25, 21.6)		
d	$\pi(g_{9/2}^{-3}g_{7/2}^2p_{1/2}^{-2}) \otimes \nu(g_{7/2}^4d_{5/2}^2h_{11/2}^2)$	$\pi g_{9/2}^{-1}$	-890.81	$(0.35,\!10.5)$		
e*	$\pi g_{9/2}^{-1} p_{1/2}^{-2} \otimes \nu (g_{7/2}^5 d_{5/2}^2 h_{11/2}^1)$	$\pi g_{9/2}^{-1} \! \otimes \! u h_{11/2}^1 g_{7/2}^{-1}$	-891.70	(0.23, 34.9)	2.46	$2.47\star$
f*	$\pi g_{9/2}^{-1} p_{1/2}^{-2} \otimes \nu (g_{7/2}^6 d_{5/2}^1 h_{11/2}^1)$	$\pi g_{9/2}^{-1} \otimes u h_{11/2}^1 d_{5/2}^1$	-891.06	(0.23, 26.5)	3.10	2.62^{+}
g*	$\pi g_{9/2}^{-1} p_{1/2}^{-2} \otimes \nu (g_{7/2}^6 h_{11/2}^1 h_{11/2}^1)$	$\pi g_{9/2}^{-1} \! \otimes \! \nu h_{11/2}^1 h_{11/2}^1$	-890.22	(0.25, 38.5)	3.94	3.91‡
* 带C的带头自旋 $I^{\pi} = 15/2^{-}$ 的激发能 [162],						

† 带D的带头自旋 $I^{\pi} = 15/2^{-}$ 的激发能 [162],

‡带E的带头自旋 $I^{\pi} = 23/2^{+}$ 的激发能 [162]。

²J.¹Timar, et al., Phys. Rev. C 76, 024307 (2007)

CDFT计算

	Configuration		E_{tot}		$E_x(\text{cal.})$	$E_x(\exp.)$
State	Valence nucleons	Unpaired nucleons	(MeV)	(eta,γ)	(MeV)	(MeV)
a	$\pi g_{9/2}^{-3} {\otimes} u (g_{7/2}^6 d_{5/2}^2)$	$\pi g_{9/2}^{-1}$	-894.16	(0.18, 0.02)	0	
b	$\pi(g_{9/2}^{-2}p_{1/2}^{-1}) \otimes u(g_{7/2}^{6}d_{5/2}^{2})$	$\pi p_{1/2}^{-1}$	-894.10	(0.20, 13.5)	0.06	0
c	$\pi(g_{9/2}^{-2}g_{7/2}^1p_{1/2}^{-2}) \otimes u(g_{7/2}^6d_{5/2}^2)$	$\pi g_{7/2}^1$	-891.60	(0.25, 21.6)		
d	$\pi(g_{9/2}^{-3}g_{7/2}^2p_{1/2}^{-2}) \otimes \nu(g_{7/2}^4d_{5/2}^2h_{11/2}^2)$	$\pi g_{9/2}^{-1}$	-890.81	$(0.35,\!10.5)$		
e*	$\pi g_{9/2}^{-1} p_{1/2}^{-2} \otimes \nu (g_{7/2}^5 d_{5/2}^2 h_{11/2}^1)$	$\pi g_{9/2}^{-1} \! \otimes \! u h_{11/2}^1 g_{7/2}^{-1}$	-891.70	(0.23, 34.9)	2.46	带C
f*	$\pi g_{9/2}^{-1} p_{1/2}^{-2} \otimes \nu (g_{7/2}^6 d_{5/2}^1 h_{11/2}^1)$	$\pi g_{9/2}^{-1} \otimes u h_{11/2}^1 d_{5/2}^1$	-891.06	(0.23, 26.5)	3.10	带G, D
g*	$\pi g_{9/2}^{-1} p_{1/2}^{-2} \otimes \nu (g_{7/2}^6 h_{11/2}^1 h_{11/2}^1)$	$\pi g_{9/2}^{-1} \! \otimes \! \nu h_{11/2}^1 h_{11/2}^1$	-890.22	(0.25, 38.5)	3.94	3.91‡
* 带C的带头自旋 $I^{\pi} = 15/2^{-}$ 的激发能 [162],						

† 带D的带头自旋 $I^{\pi} = 15/2^{-}$ 的激发能 [162],

‡带E的带头自旋 $I^{\pi} = 23/2^{+}$ 的激发能 [162]。

J. Timar, et al., Phys. Rev. C 76, 024307 (2007)

¹⁰⁵Ag能级纲图

CDFT计算单粒子能级图

能谱

MPRM计算很好地 再现实验能谱。

B(M1)/B(E2)

◆ 采用协变密度泛函理论(CDFT)和多粒子转子模型(MPRM)研究¹⁰⁵Ag中三条近简 并的负字称带。

小结

- ◆ 通过CDFT计算展示了单粒子谱中的赝自旋对称性以及三轴形变共存。
- ◆ MPRM计算再现了¹⁰⁵Ag中三重带的能谱及B(M1)/B(E2)值及其stagger相位,我们建议三重带中第一和第二能量低的带分别基于πg⁻¹g/2⊗vh_{11/2}g⁻¹7/2组态和πg⁻¹g/2⊗vh_{11/2}d⁻¹5/2组态为质自旋双重带,质自旋双重带的B(M1)/B(E2)展现相反的 摇摆相位。建议三重带中第二和第三能量低的带基于πg⁻¹g/2⊗vh_{11/2}d⁻¹5/2组态为 手征双重带,手征双重带的B(M1)/B(E2)展现了相同的摇摆相位,双带的角动 量期待值呈现理想的手征几何图像。¹⁰⁵Ag中的三重带提供了第一个原子核手 征对称性与赝自旋对称性共存的例子。
 - 类似是三重带的结构在临近核¹⁰⁵Rh中也观测到了,但缺失电磁跃迁信息。 若手征对称性与赝自旋对称性同时发生在同一个核中,期待观测四条相同宇称近简并的ΔI=1带(手征-赝自旋四重带)。

Coexistence of chiral symmetry and pseudospin symmetry in one nucleus: triplet bands in ¹⁰⁵Ag, Jia, BQ*, Liu, and Wang, J. Phys. G 46, 035102 (2019)

◆引言

◆手征和赝自旋对称性共存的首次研究◆四把剪刀机制的反磁转动的首次研究◆三轴形变参数对Wobbling激发的影响

磁转动带

◆磁转动:在弱的形变核中,由质子-粒子(空穴)与中子-空穴(粒子) 的角动量耦合构成了总角动量^[1]。此种转动是由磁偶极矩转动而 形成的^[2]。也被解释为剪刀机制。

磁转动的角动量耦合示意图

[1] S. Frauendorf, Nucl. Phys. A 557, 259c (1993).

[2] S. Frauendorf, J. Meng, and J. Reif, in Proceedings of the Conference on Physics from Largeγ-Ray Detector Arrays₃ edited by M. A. Deleplanque (University of California Press, Berkeley, 1994), vol. II of Report LBL35687, p. 52.

◆反磁转动:在近球形核中,两个价质子的角动量相互靠拢,总角动量和中子角动量方向几乎不变;总磁矩的方向沿着总角动量的方向^[1]。也被解释为双剪刀机制^[2]。

反磁转动的角动量耦合示意图

◆ 反磁转动带能谱特征:由电四极(E2)跃迁连接的ΔI=2的转动能谱, B(E2)值随着自旋增加而减小。

[1] Frauendorf, Rev. Mod. Phys. 73, 463 (2001). [2] Choudhury, Jain, Patial, PRC 82, 061308(R) (2010)
[3] S. Frauendorf, Nucl. Phys. A 557, 259c (1993).

[4] S. Frauendorf, J. Meng, and J. Reif, in Proceedings of the Conference on Physics from Largeγ-Ray Detector Arrays₄ edited by M. A. Deleplanque (University of California Press, Berkeley, 1994), vol. II of Report LBL35687, p. 52.

引言:反磁转动的研究现状

在Cd同位素中,人们观测到了一系列ΔI=2的带[1-7],并将其解释为反磁转动带。

Neutron

[1] A. J. Simons et al., PRL. 91, 162501 (2003).
 [2] D. Choudhury et al., PRC. 82, 061308 (2010).
 [3] D. Choudhury et al., PRC. 87, 034304 (2013).
 [4] A. J. Simons et al., PRC 72, 024318 (2005).
 [5] P. Datta et al., PRC 71, 041305 (2005).
 [6] Zhang, Qi, Wang, PRC 89, 047302 (2014).
 [7] S. Roy et al., Phys. Lett. B694, 322 (2011).

Cd同位素中的反磁转动带基于质子 组态 $\pi(g_{9/2})^{-2}$,由两个 $g_{9/2}$ 质子空穴 闭合呈现经典的双剪刀机制图像。 从剪刀机制到双剪刀机制,原子核 中是否存在更多对剪刀机制的反磁 转动?

引言:反磁转动的研究现状

[1] A. J. Simons et al., PRL. 91, 162501 (2003).
 [2] D. Choudhury et al., PRC. 82, 061308 (2010).
 [3] D. Choudhury et al., PRC. 87, 034304 (2013).
 [4] A. J. Simons et al., PRC 72, 024318 (2005).
 [5] P. Datta et al., PRC 71, 041305 (2005).
 [6] Zhang, **BQ**, Wang, PRC 89, 047302 (2014).
 [7] S. Roy et al., Phys. Lett. B694, 322 (2011).

 J_2 [*h*] P. W. Zhao *et al.*, PRL. **107**, 122501 (2011). Cd同位素中的反磁转动带基于质子 组态 $\pi(g_{9/2})^{-2}$,由两个 $g_{9/2}$ 质子空穴 闭合呈现经典的双剪刀机制图像。 从剪刀机制到双剪刀机制,原子核 中是否存在更多对剪刀机制的反磁 转动?

引言:反磁转动的研究现状

在Pd (钯, ba)同位素中,人们观测到了一系列ΔI=2的带^[1-3],并将其解释为反磁转动带。

Neutron

[1] N. Rather, et al, Phys. Rev. C 89, 061303(R) (2014).
[2] M. Sugawara, et al., Phys. Rev. C 92, 024309 (2015).
[3] S. Zhu, et al., Phys. Rev. C. 64 041302 (2001).
[4] J. Gizon, et al., Phys. Lett. B 410, 95-102 (1997).
[5] B. M. Nyako, et al., Phys. Rev. C 60, 024307 (1999).

引言: 101,102,103,104Pd的研究现状

M. Sugawara, et al., Phys. Rev. C 92, 024309 (2015).	I Gizon et al Phys Lett B 410 95-102 (1997)			
V. Singh et al., Phys. Rev. C 95, 064312 (2017).	5. Olzon, et al., 1 hys. Lett. D 410, 55 102 (1557).			
核素: 101Pd	核素: 102Pd			
组态: $\pi(g_{9/2})^{-4}\otimes \nu(h_{11/2})/\pi(g_{9/2})^{-2}\otimes \nu(h_{11/2})$	组态: $\pi(g_{9/2})^{-4}\otimes \nu(h_{11/2})^2 (g_{7/2}/d_{5/2})^4$			
模型: modified semiclassical particle-rotor model	模型: Nilsson-Strutinsky cranking formalism			
结论:理论计算得到I(ω)和B(E2)值与实验数据的	结论:所有价核子全顺排提供最大角动量为32+,			
对比关系表明, vh _{11/2} 带低自旋部分起源是反磁转	带终结			
动。				
B. M. Nyako, et al., Phys. Rev. C 60, 024307 (1999).	N. Rather, et al, Phys. Rev. C 89, 061303(R) (2014).			
核素: ¹⁰³ Pd	核素: 104Pd			
组态: $\pi(g_{9/2})^{-4} \otimes \nu(h_{11/2})(g_{7/2}/d_{5/2})^6$	组态:π(g _{9/2}) ⁻² ⊗ν(h _{11/2}) ² 类比 ¹⁰⁶ Cd的反磁转动带			
模型: Nilsson-Strutinsky cranking calculations	模型: semiclassical particle plus rotor model			
结论:所有价核子全顺排提供最大角动量为59/2-	结论: J²/B(E2) 比好的形变转动大了一个数量级,			
,带终结	理论计算得到I(ω)和B(E2)值很好的再现了实验数			
NG.	据。从而推断高自旋晕态的起源是反磁转动。			

引言: 101,102,103,104Pd的研究现状

M. Sugawara, et al., Phys. Rev. C 92, 024309 (2015).	I Gizon et al Phys Lett B 410 , 95-102 (1997).
V. Singh et al., Phys. Rev. C 95, 064312 (2017).	5. Gizon, et al., 1 hys. Lett. D 110, 90 102 (1997).
核素: ¹⁰¹ Pd	核素: 102Pd
$4\pi \star \pi(\alpha) - 4\Omega_{1}(h) / \pi(\alpha) - 2\Omega_{1}(h)$	
反磁转动机制存在争议	中低自旋转动机制未讨论
结论:理论计算得到I(ω)和B(E2)值与实验数据的	结论:所有价核子全顺排提供最大角动量为32+,
对比关系表明, vh _{11/2} 带低自旋部分起源是反磁转	带终结
动。	
B. M. Nyako, et al., Phys. Rev. C 60, 024307 (1999).	N. Rather, et al, Phys. Rev. C 89, 061303(R) (2014).
核素: ¹⁰³ Pd	核素: 104Pd
组态:π(g _{9/2}) ⁻⁴ ⊗ν(h _{11/2})(g _{7/2} /d _{5/2}) ⁶	组态: $\pi(g_{9/2})^{-2}\otimes\nu(h_{11/2})^2$ 类比 106 Cd的反磁转动带
中低自旋转动机制未讨论	^{模型:} 后磁柱动组太斩定
结论: 所有价极于全顺排提供敢大用初重为59/2	结论:「风槛行列纽心百尺
,带终结	理论计算得到I(ω)和B(E2)值很好的再现了实验数
NG	据,从而推断高自旋晕态的起源是反磁转动。

引言

◆ 基于协变密度泛函理论的倾斜轴推转模型(TAC-CDFT)
 > 成功描述了⁶⁰Ni, ⁵⁸Fe, ¹¹⁰Cd, ¹¹⁴In, ¹⁴²Gd, ^{198,199}Pb的磁转动带;
 > 成功描述了^{105,109}Cd中的反磁转动带;
 > 成功描述了¹¹⁵In, ⁷⁴As中的订书机带。

◆P. W. Zhao *et al.*, Phys. Rev. C **85**, 054310 (2012).

◆P. W. Zhao *et al.*, Phys. Rev. Lett. **107**, 122501 (2011).
◆Peng J, Meng J, Ring P *et al.*, Phys Rev C **78**: 024313 (2008)

◆Zhao PW, Zhang S Q, Peng J, *et al.*, Phys Lett B, **699**: 181–186 (2011)

◆ Steppenbeck D, Janssens R V F, Freeman S J, *et al.*, Phys Rev C **85**: 044316 (2012)

详细的介绍可参考文献:

◆J. Peng et al., PRC 78, 024313 (2008).
◆P. W.Zhao et al., Phys. Lett. B 699, 181 (2011).
◆L.Yu et al., Phys. Rev. C 85, 024318 (2012).
◆W. Zhang et al., Phys. Rev. C 88, 054324 (2013).

◆ P. Zhang, B. Qi, and S. Y. Wang, Phys. Rev. C **89**, 047302 (2014).

◆ L. F. Yu *et al.*, Phys. Rev. C **85**, 024318 (2012).

◆Peng J, Zhao P W. *et al.*, Phys. Rev. C **91**:044329 (2015)

◆Li C B, Li J, Wu X G, et al., Nucl Phys A 892: 34–42 (2012)

◆Chen Z Q, Wang S Y, Liu L, et al. High-spin states and possible "stapler" band in ¹¹⁵In. Phys Rev C, 2015, **91**: 044303

◆ P. W. Zhao *et al.*, Phys. Rev. Lett. **107**, 122501 (2011).

- ◆ P. W. Zhao *et al.*, Phys. Rev. C **85**, 054310 (2012).
- P. W. Zhao *et al.*, Phys. Rev. C **89**, 011301 (2014).

◆我们将利用协变密度泛函理论的倾斜轴推转模型(TAC-CDFT)系统研究奇A核^{101,103}Pd核和偶偶核^{102,104}Pd中候选反磁转动带并探索可能的四剪刀机制的反磁转动。

理论框架

- ◆协变密度泛函理论(CDFT)是一个微观自洽的理论,基本出发点是利用介子交换方式提供核力或者采用点耦合方式构造协变密度泛函,在描述原子核基态和激发态性质取得了巨大成功。
- ◆ 基于介子交换的协变密度泛函理论,

The RMF theory starts from an effective Lagrangian density with baryons, mesons $(\sigma, \omega \text{ and } \rho)$ and photons as degrees of freedom:

$$\mathcal{L} = \sum_{B} \overline{\psi}_{B} \left[i\gamma^{\mu} \partial_{\mu} - m_{B} - g_{\sigma B} \sigma - g_{\omega B} \gamma^{\mu} \omega_{\mu} - g_{\rho B} \gamma^{\mu} \tau_{B} \cdot \rho_{\mu} - e\gamma^{\mu} A_{\mu} \frac{1 - \tau_{3B}}{2} \right] \psi_{B}$$

$$+\frac{1}{2}\partial_{\mu}\sigma\partial^{\mu}\sigma - \frac{1}{2}m_{\sigma}^{2}\sigma^{2} - U(\sigma) - \frac{1}{4}\omega_{\mu\nu}\omega^{\mu\nu} + \frac{1}{2}m_{\omega}^{2}\omega_{\mu}\omega^{\mu} + U(\omega)$$

$$-\frac{1}{4}\rho_{\mu\nu}\rho^{\mu\nu} + \frac{1}{2}m_{\rho}^{2}\rho_{\mu}\rho^{\mu} - \frac{1}{4}A_{\mu\nu}A^{\mu\nu},$$

理论框架

◆基于点耦合作用的协变密度泛函理论,核子间通过零程点耦合的形式来实现, 构成相对论点耦合模型的基本模块包括

 $(\bar{\psi}\mathcal{O}\Gamma\psi), \quad \mathcal{O}\in\{1,\vec{\tau}\}, \quad \Gamma\in\{1,\gamma_{\mu},\gamma_{5},\gamma_{5}\gamma_{\mu},\sigma_{\mu\nu}\}$ 点耦合有效拉氏量密度可以表示为模块的幂次及其微商的形式 $\mathcal{L} = \mathcal{L}^{ ext{free}} + \mathcal{L}^{ ext{4f}} + \mathcal{L}^{ ext{hot}} + \mathcal{L}^{ ext{der}} + \mathcal{L}^{ ext{em}}.$ 自由核子拉氏密度项 ${\cal L}^{
m free} = ar{\psi} (i \gamma_\mu \partial^\mu - m) \psi.$ $\mathcal{L}^{4f} = -\frac{1}{2}\alpha_S(\bar{\psi}\psi)(\bar{\psi}\psi) - \frac{1}{2}\alpha_V(\bar{\psi}\gamma_\mu\psi)(\bar{\psi}\gamma^\mu\psi)$ 四费米子项 $-\frac{1}{2}\alpha_{TS}(\bar{\psi}\vec{\tau}\psi)(\bar{\psi}\vec{\tau}\psi) - \frac{1}{2}\alpha_{TV}(\bar{\psi}\vec{\tau}\gamma_{\mu}\psi)(\bar{\psi}\vec{\tau}\gamma^{\mu}\psi)$ $\mathcal{L}^{\text{hot}} = -\frac{1}{2}\beta_S(\bar{\psi}\psi)^3 - \frac{1}{4}\gamma_S(\bar{\psi}\psi)^4 - \frac{1}{4}\gamma_V[(\bar{\psi}\gamma_\mu\psi)(\bar{\psi}\gamma^\mu\psi)]^2$ 考虑核力介质的高阶项 $= -\frac{1}{2}\delta_S \partial_\nu(\bar{\psi}\psi)\partial^\nu(\bar{\psi}\psi) - \frac{1}{2}\delta_V \partial_\nu(\bar{\psi}\gamma_\mu\psi)\partial^\nu(\bar{\psi}\gamma^\mu\psi)$ $\mathcal{L}^{\mathrm{der}}$ $-\frac{1}{2}\delta_{TS}\partial_{\nu}(\bar{\psi}\vec{\tau}\psi)\partial^{\nu}(\bar{\psi}\vec{\tau}\psi) - \frac{1}{2}\delta_{TV}\partial_{\nu}(\bar{\psi}\vec{\tau}\gamma_{\mu}\psi)\partial^{\nu}(\bar{\psi}\vec{\tau}\gamma_{\mu}\psi)$ 模拟核力有限程微商项 $\mathcal{L}^{\rm em} = -\frac{1}{4} F^{\mu\nu} F_{\mu\nu} - e \frac{1 - \tau_3}{2} \bar{\psi} \gamma^{\mu} \psi A_{\mu} \quad \begin{array}{l} \text{P. W. Zhao et al, Phys.} \\ \text{Rev. C 85, 054310 (2012).} \end{array}$ 电磁相互作用项

理论框架

◆基于协变密度泛函理论的倾斜轴推转模型,它是假定原子核绕着在xz平面内的 轴转动,从转动的拉格朗日函数出发,得到核子的狄拉克运动方程:

$$[\alpha \cdot (-i\nabla - V) + \beta(m+S) + V^0 - \Omega \cdot \hat{J}]\psi_k = \epsilon_k \psi_k$$

 $\Omega = (\Omega_x, 0, \Omega_z) = (\Omega \cos \theta_\Omega, 0, \Omega \sin \theta_\Omega)$ 可以通过迭代求解核子的狄拉克运动方程而得到能量,角动量 约化电磁跃迁几率 P. W. Zhao et al, Phys. Rev. Lett. 107, 122501 (2011). P. W. Zhao et al, Phys. Rev. C 85, 054310 (2012).

 $B(M1) = \frac{3}{8\pi} \mu_{\perp}^2 = \frac{3}{8\pi} (\mu_x \sin \theta_J - \mu_z \cos \theta_J)^2$ $B(E2) = \frac{3}{8} [Q_{20}^p \cos^2 \theta_J + \sqrt{\frac{2}{3}} Q_{22}^p (1 + \sin^2 \theta_J)]^2$

计算细节

◆Nucleus: ^{101,102,103,104}Pd **Number of fermi shells: 10** Number of bosons shells: 10 Parameter set: PC-PK1 P. W. Zhao et al., Phys. Rev. C 82, 054319 (2010). S. Juutinen et al., Nucl. Phys. A 577, 727 (1994). Configurations and cranking frequency : ¹⁰¹Pd: $\pi(g_{9/2})^{-4} \otimes \nu(h_{11/2})(g_{7/2}/d_{5/2})^4 : 0.26-0.48 \text{MeV}$ ¹⁰²Pd: $\pi(g_{9/2})^{-4} \otimes \nu(h_{11/2})^2 (g_{7/2}/d_{5/2})^4 : 0.35 - 0.62 \text{MeV}$ ¹⁰³Pd: $\pi(g_{9/2})^{-4} \otimes \nu(h_{11/2}) (g_{7/2}/d_{5/2})^{6}$: 0.36-0.64MeV ¹⁰⁴Pd: $\pi(g_{9/2})^{-4} \otimes \nu(h_{11/2})^2 (g_{7/2}/d_{5/2})^6$: 0.26-0.72MeV N. Rather, et al, Phys. Rev. C 89, 061303(R) (2014). M. Sugawara, et al., Phys. Rev. C 92, 024309 (2015). J. Gizon, et al., Phys. Lett. B 410, 95-102 (1997). B. M. Nyako, et al., Phys. Rev. C 60, 024307 (1999).

能谱与自旋

理论计算的能谱与实验数据的比较

从上图可以看出,理论计算很好地再现实验能谱。

B(E2)与 J² / B(E2)

形变参量

随着转动频率的增加,形变参量β逐渐减小。

角动量耦合图像

 $g_{9/2}$ 质子空穴角动量矢量 (j_{π}) 和 $h_{11/2}$ 中子粒子角动量矢量 (j_{v}) 。

- ◆展示出了四剪刀机制的反磁转动图像,我们将这种耦合机制命名为"类雨 伞反磁转动(UAMR)"。
- ◆期待观测价核子占据更高-j的轨道(比如i_{13/2})的六剪刀机制的反磁转动带。
 Possible umbrella-like antimagnetic rotation mode in odd-A ^{101,103}Pd and even-even ^{102,104}Pd Jia, BQ*, Liu, Hu, and Wang*, Phys. Rev. C, 97, 024335 (2018).

角动量增量的贡献

小结

1. 基于协变密度泛函理论下的倾斜轴推转模型对如下组态进行了微观自洽地计算, ¹⁰¹Pd: $\pi(g_{9/2})^{-4} \otimes \nu h_{11/2} (g_{7/2}/d_{5/2})^4$, ¹⁰²Pd: $\pi(g_{9/2})^{-4} \otimes \nu (h_{11/2})^2 (g_{7/2}/d_{5/2})^4$, ¹⁰³Pd: $\pi(g_{9/2})^{-4} \otimes \nu h_{11/2} (g_{7/2}/d_{5/2})^6$, ¹⁰⁴Pd: $\pi(g_{9/2})^{-4} \otimes \nu (h_{11/2})^2 (g_{7/2}/d_{5/2})^6$ 的带;

2.在没有任何额外参数的情况下,理论计算很好的再现了^{101,102,103,104}Pd的能谱、 B(E2)值,第二类转动惯量/B(E2)值,并与反磁转动的典型特征一致,首次建议 ^{102,103}Pd中的反磁转动。

3. 通过角动量的分析,我们呈现了"四剪刀"机制的反磁转动角动量耦合图像,将这种耦合机制命名为"类雨伞反磁转动(UAMR)"模式,这将激发实验探索对于更高-j轨道的六剪刀机制的反磁转动带。

总结

利用协变密度泛函理论(CDFT)和粒子转子模型(PRM)对原子核中 几种奇特转动模式如反磁转动带、手征双重带、赝自旋双重带、 Wobbling 激发进行研究:

- 1. 建议手征和赝自旋对称性共存于¹⁰⁵Ag中的三条近简并的负宇称带 中。建议实验寻找手征---赝自旋四重带。
- 2. 建议了Pd同位素中存在四把剪刀机制的反磁转动的图像, 建议实验寻找基于该机制的其他候选核。
- 3. 给出偶偶核中很难观察到Wobbling激发的一种解释。 发现奇A核中横向wobbling激发敏感于三轴形变和费米能的变化。