

第十七届全国核物理大会

Ab initio resonance and continuum Gamow shell model: applied to calcium isotopes up to beyond dripline

Jianguo Li (李健国)

Advisor: Prof. Furong Xu (许甫荣 教授)

Peking University

Weakly bound and unbound nuclei

scattering continuum

resonance

bound

Gamow shell model for weakly bound or unbound nuclei

$$\mathbf{H} = \mathbf{H}_{onebody}(WS) + V_{J,T}(\mathbf{r}_{1}, \mathbf{r}_{2})$$

Phenomenological nuclear force

N.Michel, Nazarewicz, Płoszajczak, Vertse, Phys. G: Nucl. Part. Phys. 36 (2009) 013101 See Nicolas Michel's talk

Z.H.Sun, Q.Wu, Z.H.Zhao, B.S.Hu, S.J,Dai, F.R.Xu

Phys. Lett. B 769 (2017) 227-232

Gamow shell model based on realistic nuclear force

The frontier : calcium isotopes

PRL.110.242701(2013) PRL.110.242701(2018) PRL 117, 272501 (2016)

Steppenbeck et al., Nature 502, 207 (2013) S. Michimasa et al. PRL. 121, 022506 (2018) O. B. Tarasov et al. PRL. 121, 022501(2018)

PRL.120.052502(2018)

The frontier : calcium isotopes

F.Wienholtz et al., Nature 498,346 (2013) S. Michimasa et al. PRL. 121, 022506 (2018) R. F. Garcia Ruiz et al. Nat. Phys 12, 594 (2016)

See Prof. X.F Yang and Prof. M Wang's talks

Mean-field calculations of calcium isotopes

Madhubrata Bhattacharya *et al.* PRC.72.044318(2005)

Ab-initio calculations of calcium isotopes

J.D.Holt *et al.*, JPG.39.085111(2013) Q_box(Ca40,pfg,HO,3rd order NN+3N)

Hagen *et al.*, PRL. 109.032502(2012) Couple-Cluster(continuum)

GSM calculations of calcium isotopes

Core : ⁴⁸Ca Interactions : CD-Bonn V_{low-k} Λ = 2.6 fm⁻¹ Model space : {1p_{3/2},1p_{1/2},0f_{5/2},0g_{9/2}+ig_{9/2}+1d_{5/2}+id_{5/2}}

9

Binding energies and single-neutron separation energies

Core : ⁴⁸Ca Interactions : CD-Bonn V_{low-k} Λ = 2.6 fm⁻¹

Model space : $\{1p_{3/2}, 1p_{1/2}, 0f_{5/2}, 0g_{9/2} + ig_{9/2} + 1d_{5/2} + id_{5/2}\}$ Calcium isotopes : ⁴⁹⁻⁶⁰Ca (produced up to ⁶⁰Ca, mass ⁵⁷Ca)

- Our GSM calculations provide good agreement with data.
- The last odd nucleus against neutron emission is predicted as ⁵⁷Ca in our GSM calculations.

Last odd nucleus against neutron emission	method	reference
⁵⁷ Ca	GSM	Our work
⁵⁹ Ca	RMF	PRC 72, 044318 (2005)
~ ⁶¹ Ca	MF	PRL 122, 062502(2019)
⁵³ Ca	IM-SRG	PRL 118.032502(2017)

The ⁶⁰Ca is a bound nucleus in our calculations, consistent with experiment.
 MF and RMF : ⁶⁰Ca is bound. IM-SRG and CC : ⁶⁰Ca is unbound 10

- For the low-lying bound states in ^{51,53}Ca, RSM and GSM provide very close results.
- For the higher excited states in ^{51,53}Ca, the calculations shows that the order of 5/2⁺ and 9/2⁺ level inverts. And the excitation energies of 5/2⁺ and 9/2⁺ level in GSM is smaller than RSM calculations. (continuum effects)

J^{π}	$E(^{51}Ca)$	$\Gamma(^{51}Ca)$	$E(^{53}Ca)$	$\Gamma(^{53}Ca)$	$E(^{55}Ca)$	$\Gamma(^{55}Ca)$	$E(^{57}\text{Ca})$	$\Gamma(^{57}Ca)$
$5/2_1^+$	7.304	1.226	5.27	0.996	2.316	0.580	1.62	0.484
$9/2_1^+$	7.592	0.041	5.59	0.008	2.601	0.00	1.18	0.00

- Predictions of the spectra of ⁵⁵⁻⁵⁸Ca.
- The intruder configurations in the low-lying states of ⁵⁸Ca.
- the disappearance of the N = 40 subshell in the calcium chain.

Configurations of the ground states in ⁵⁸ Ca	contribu tions
(1p _{3/2})^4(1p _{1/2})^2(0f _{5/2})^4	77.09%
$(1p_{3/2})^{4}(1p_{1/2})^{2}(0f_{5/2})^{2}(0g_{9/2})^{2}$	14.6%
$(1p_{3/2})^{4}(1p_{1/2})^{2}(0f_{5/2})^{2}(1d_{5/2})^{2}$	2.29%

Neutron shell evolution in the calcium chain 1/2

effective single particle energies(ESPE)

⁶⁰Ca is bound, and calculations also suggest that ⁷⁰Ca is also bound.

The N = 32,34 is shown in our GSM calculations, which consistent with experimental data.

Prediction of the N = 40 subshell disappears in the Ca chain.

The energies of the first 2_1^+ states

The two-neutron separation energies

The existence of the N = 32 and 34 sub-shell and the disappearance of the N = 40 sub-shell in the calcium chain. The calculations of the nuclei near N = 32,34 is agree with experiment data. Nature 502,207 (2013),Nature 498,346 (2013) PRL. 121 022506 (2018) The disappearance of the N = 40 sub-shell also happens in the Ti, Cr and Fe isotopes. PRL.110.242701(2013) PRL.110.242701(2018) See Prof. X.F Yang and Prof. M Wang's talks about the N =32 shell evolution in K and Sc isotopes, respectively. 14

- Calculations of binding energies of the calcium isotopes. Calculations provide the stability of the ⁶⁰Ca. Results predict that the one- and two-neutron dripline locate ⁵⁸Ca and ⁷⁰Ca, respectively.
- 2. Excited states in ^{51,53,55,57}Ca is calculated.

Continuum effects are indicated in the high excited states of $9/2^+$ and $5/2^+$.

- Low-lying states of ⁵⁵⁻⁵⁸Ca are predicted.
 The intruder configurations are shown in the ground state of ⁵⁸Ca.
- 4. Shell evolution of the N = 32,34,40 are discussed via the calculations of ESPEs, $E(2_1^+)$ and S_{2n} .

The calculations of around the N = 32,34 are in line with experimental data. Results also suggest the disappearance of the N = 40 sub-shell in the calcium chain.

Thanks for your attention

Collaborators :

KNOXVILLE

Furong Xu, Baishan Hu, Qiang Wu, Sijie Dai, Yuan Gao

Zhonghao Sun

Acknowledgments :

Junchen Pei, Yuanzhuo Ma, Shuang Zhang, Qi Yuan, Bo Dai.....

Chong Qi

Cenxi Yuan

Siming Wang

Nicolas Michel Wei Zuo

backup slides

GSM results

