Type: not specified

Ab initio resonance and continuum Gamow shell model: applied to calcium isotopes up to beyond dripline

Thursday, 10 October 2019 16:40 (20 minutes)

Based on the realistic nuclear force of the high-precision CD-Bonn potential, we have performed comprehensive calculations for neutron-rich calcium isotopes using the Gamow shell model method (CGSM) which includes resonance and continuum. The GSM calculations well produce the binding energies and single-neutron separation energies of the calcium isotopes, predicting that ⁵⁷Ca is the last bound odd isotope and even-even ⁷⁰Ca is the dripline nucleus in calcium chain. Resonant states are predicted, which provides useful information for experiments on particle unstability in neutron-rich calcium isotopes. The evolutions of the shell structure around the neutron numbers of N = 32, 34 and 40 in the calcium chain are understood via the calculations of effective single-particle energies and the energies of the first 2⁺ states, as well as two-neutron separation energies. Our calculations support the sub-shell closures in ⁵²Ca (N = 32) and ⁵⁴Ca (N = 34) and pedict that the N = 40 sub-shell closure disappears in calcium chain. The possible shell closure at N=50 and the dripline position at ⁷⁰Ca are predicted. Effects from the continuum coupling are discussed.

Abstract Type

Talk

Primary authors: Prof. XU, Furong (Peking University); Dr LI, Jianguo (PKU)

Co-authors: Dr HU, Baishan (Peking University); Prof. MICHEL, Nicolas (Institute of Modern Physics, Lanzhou)

Presenter: Dr LI, Jianguo (PKU)

Session Classification: S1: 核结构

Track Classification: 核结构