Temperature Fluctuation and the Specific Heat in Au+Au Collisions at $\sqrt{s_{NN}} = 7 - 200 \text{ GeV}$ in AMPT model

Xiujun Li

University of Science and Technology of China

State Key Laboratory of Particle Detection and Electronics

Abstract

Specific heat is a thermodynamic quantity that characterizes the equation of state of the system. For a system undergoing phase transition, the specific heat, C_V , is expected to diverge at the critical point. Temperature fluctuation of the system provides an estimation of C_V . The specific heat can be extracted from event-by-event temperature fluctuation. Thus the variation of thermal fluctuations with temperature can be effectively used to probe the QCD phase transition and QCD critical point.

QCD phase diagram

The transition to QGP changes from a crossover to a first order results in the existence of a critical point (circle) in the QCD phase diagram. Calculation expects that the critical point exists in the range 250 < $\mu_{B} < 450 \text{ MeV}$.

$$C_2 = \mu_2 = \langle (\delta N)^2 \rangle = \sigma^2,$$

$$C_3 = \mu_3 = \langle (\delta N)^3 \rangle,$$

$$C_4 = \mu_4 - 3\mu_2^2 = \langle (\delta N)^4 \rangle - 3 \langle (\delta N)^2 \rangle^2,$$

$$S\sigma = \frac{c_3}{c_2}, \kappa\sigma^2 = \frac{c_4}{c_2}$$

The T_{eff} distributions are nicely described by using the gamma distribution:

 $f(x) = \frac{x^{\alpha - 1} e^{-x/\beta}}{\Gamma(\alpha)\beta^{\alpha}}, x > 0(\alpha, \beta > 0) ,$

The mean (μ) and standard deviation (σ) of the distribution are related to the fit parameters(α and β) by

Summary

 $\mu = \alpha\beta$ and $\sigma^2 = \alpha\beta^2$. Then we can obtain that: $\mu_3 = 2\alpha\beta^2$, $\mu_4 = 6\alpha(\alpha + 2)\beta^4$, $\mu_5 = (20\alpha^2 + 24\alpha)\beta^5$,.... $S\sigma = 2\beta, \kappa\sigma^2 = 6\beta^2.$

We studied temperature fluctuations and the specific heat capacity in Au+Au collisions at $\sqrt{s_{NN}} = 7 - 200$ GeV in AMPT model. C_V result shows good agreement with data at high energy but much lower than data at low energy. Both C_V and higher order cumulants of the temperature fluctuations show monotonic distributions, which is expected that there is no phase transition critical point in the AMPT model. This provides a good reference for comparison with experimental data to search for the signal of critical point in the QCD phase diagram.

References

[1] Basanta K. Nandi, 2016 arXiv: nucl-ex/1601.05631v2 [2] MA Guo-Liang et al. 2004 High Energy Physics and Nuclear Physics 28 398–402 [3] Shu He ,Xiaofeng Luo ,2017 arXiv: nucl-ex/1704.00423v3 [4] Xiaofeng Luo 2012 J.Phys.G:Nucl.Part.Phys.39 025008 [5] Yu Zhang *et al.* 2019 arXiv: nucl-ex/1905.01095v1

