Microscopic optical potentials for Li isotopes

Wednesday, 9 October 2019 18:00 (1 hour)

The microscopic optical potentials for Li isotopes(A=6,7,8) without free parameter are obtained by folding the microscopic optical potentials of their internal nucleons with density distributions generated from corresponding internal wave functions. An isospin-dependent nucleon microscopic optical potential based on the Skyrme nucleon-nucleon effective interaction is used as the nucleon optical potential. Shell model and cluster model are employed respectively to construct the internal wave functions of Li isotopes(A=6,7,8) and derive their density distributions of internal nucleons. The Li microscopic optical potentials are used to calculate the elastic-scattering angular distributions and reaction cross sections. The results reproduce experimental data well and are comparable to those calculated by phenomenological optical model potentials in many cases.

Abstract Type

Poster

Primary author: Dr CHEN, wendi (Graduate School of China Academy of Engineering Physics)

Co-authors: GUO, Hairui (Institute of Applied Physics and Computational Mathematics); SHEN, Qingbiao (Key Laboratory of Nuclear Data, China Institute of Atomic Energy); YE, Tao (Institute of Applied Physics and Computational Mathematics); SUN, Weili (Institute of Applied Physics and Computational Mathematics); HAN, Yinlu (Key Laboratory of Nuclear Data, China Institute of Atomic Energy)

Presenter: Dr CHEN, wendi (Graduate School of China Academy of Engineering Physics)

Session Classification: S5: Poster 分会场

Track Classification: S5 分会场: Poster