Influence of initial-state momentum anisotropy on the final-state collectivity in small collision systems

> Maowu Nie (聂茂武) October 10, 2019

Based on : arXiv:1906.01422

Collaborators: Li Yi, Jiangyong Jia, Guoliang Ma

"ridge" in different collision system

Where is the onset of collectivity flow if any?

Origin of vn in small system

Emergence of collectivity

Credit: Sören Schlichting, IS2019

Event multiplicity (dNch/dq)

Qualitatively not Quantitatively!

• Sizable azimuthal anisotropy can be induced by the initial state correlations or parton escape mechanism at low multiplicity.

Go beyond the long ongoing debate between

AMPT model

AMPT model setup

- **AMPT-string melting**
- parton cross section
- $p+Pb \sqrt{s_{NN}} = 5.02 \text{ TeV}$

M. MASERA et al PRC 79, 064909 (2009)

for each parton: **σ=3mb** keep the x, y, z unchanged (geometry response remains) keep the p_T , η unchanged, change the ϕ $\phi = \sum \frac{2}{n} v_n \sin(n(\phi - \Psi_n))$ A so-called "initial flow $= \phi_0$ is introduced at the initial stage. v_n is controllable in the equation! Ψ_{MP} is randomly choose form 0-2 π Ψ_{MP} initial momentum plane • Ψ_{PP} initial geometry plane $\Psi_{\rm EP}$ final state flow event plane

Simplify the idea

Maowu Nie (聂茂武), CNPC2019

Test with AMPT

• randomize azimuthal angle of the parton, $v_2^{ini} = 0$

- long-range correlation (LRC) -> geometry response
- short-range correlation (SRC) -> non-equilibrium dynamics

Test with AMPT

• With an input $v_2^{ini} = 0.1$ at initial stage

A simultaneous study of LRC and SRC are essential to disentangle the geometry response and non-equilibrium behavior.

Influence of final flow by initial flow

- Low Nch: final flow strongly biased by initial flow.
- **High Nch:** final flow increases slowly with initial flow.

Influence of final flow by initial flow

- Low Nch: final flow strongly biased by initial flow.
- **High Nch:** final flow increases slowly with initial flow.
- Initial anisotropy survives and biases both the geometry-driven flow and flow fluctuation.

phase correlation

• Final EP is more influenced at low Nch and less influenced at high Nch.

What do we learn so far...

Event multiplicity ($dN_{ch}/d\eta$)

- The final flow(both magnitude and phase) can be large influenced by the initial anisotropy, especially at low Nch.
- **Smaller systems** (O+O, Ar+Ar) can shed light on the mechanism of collectivity.

Summary

- The presence of initial momentum anisotropy can change dramatically the final observed flow.
- Mere evidence for geometry response does not rule out possible large contributions from initial state in small systems.
- Disentangling these requires further detailed small system scan (O+O, Ar+Ar).

Backup

AMPT model

Further investigation with fixed Ψ_{MP} initial flow $v_2^{ini} = 0.05$

hPsiCor

hPsiCor

 Ψ_{PP} initial geometry

 Ψ_{PP} initial geometry

Further investigation with fixed Ψ_{MP}

• When Ψ_{MP} is aligned with Ψ_{PP} , the final v_2 and the angular correlations are stronger.

eccentricity vs. Nch

<Ncoll> vs. Nch

