第十七届全国核物理大会 武汉,2019年10月8-12日

Open and Hidden Heavy Flavor Production with RHIC-STAR

Zebo Tang (唐泽波)

Department of Modern Physics, University of Science and Technology of China (USTC) State Key Laboratory of Particle Detection and Electronics

Heavy Flavor: Penetrating probe of QGP

- Dominantly produced in the early stage Experience the whole evolution of QGP
- Produced in hard scatterings Calibrate probe calculable in pQCD
- Strongly interact with the hot, dense medium Probes the properties of QGP

Outline

- Open heavy flavor production
 - D^0 , D^{\pm} , $D^{*\pm}$ production
 - D_s production
 - Λ_c production

- *Hidden heavy flavor production Please see*
 - 査王妹: Very-low- $p_T J/\psi$ production in HHIC **S3**, 10/10, 14:30
 - 王鹏飞: Upsilon in Au+Au collisions at 200 GeV S3, 10/10, 11:50
 - 杨 钱: J/ψ in p+p collisions at 500/510 GeV S3, 10/10, 11:30

Open Heavy Flavor

STAR Detector

D⁰ signals in Au+Au w/o and w/ HFT

Other open charm signals in Au+Au

CNPC2019, Oct. 10, 2019, Wuhan

D⁰ cross section in Au+Au @ 200 GeV

centrality and lower than in p+p

High-p_T: decrease towards central collisions

D⁰ radial flow

- Follows the same trends of multi-strange hadrons
- Deviates from the trends of light-flavor hadrons

D⁰ suppression

- Suppression for all p_T in 0-10% central collisions
- More suppression in central than in peripheral collisions
- Similar suppression as D0@LHC and π @RHIC

$\overline{\mathbf{D}^0}/\mathbf{D}^0$

More $\overline{D^0}(\overline{c}u)$ than $D^0(c\overline{u})$, especially in central collisions

Centrality	\overline{D}^0/D^0
0–10%	1.104 ± 0.021
10-20%	1.071 ± 0.019
20-40%	1.060 ± 0.015
40-60%	1.073 ± 0.022
60-80%	0.943 ± 0.039

Possibly due to finite baryon density

D^{\pm}/D^{0}

• Consistent with the ratio @ LHC Pb+Pb and PYTHIA D^{\pm}/D^{0} has similar suppression in heavy-ion collisions

$\mathbf{D}^{*\pm}/\mathbf{D}^0$

- $D^{*\pm}/D^0$ consistent with the ratio @ LHC Pb+Pb and PYTHIA
- $D^{*\pm}/D^0$ show no centrality dependence, different from K*/K

No significant modification of D* spectral function in Au+Au

$\mathbf{D}_{\mathrm{s}}/\mathbf{D}^{\mathrm{0}}$

- Significant enhancement compare to PYTHIA and ALICE p+p
- Similar enhancement between RHIC and LHC

Strangeness enhancement + coalescence hardonization

 Λ_c/D^0

Transverse Momentum (GeV/c)

- Significant enhancement compare to PYTHIA and ALICE pp/pPb
- Comparable to light-flavor baryon-to-meson ratios

Consistent with charm quark hadronization via coalescence

Centrality dependence

- Increase from peripheral to central collisions
- Ratio for peripheral Au+Au comparable with LHC p+p

Compare to recent model predictions

CNPC2019, Oct. 10, 2019, Wuhan

Charm quark cross section in Au+Au

Charm Hadron		Cross Section dơ/dy (µb)
AuAu 200 GeV (10-40%)	D^0	41 ± 1 ± 5
	D^+	18 ± 1 ± 3
	D_s^+	15 ± 1 ± 5
	Λ_c^+	78 ± 13 ± 28 *
	Total	152 ± 13 ± 29
pp 200 GeV	Total	130 ± 30 ± 26

* derived using Λ^+_{-}/D^0 ratio in 10-80%

- Charm quark cross section per binary collision in Au+Au consistent with p+p Charm conservation
- Charm quark distribution among hadron species different between Au+Au and p+p – Charm redistribution

Summary

- Charm quark lose energy in the hot, dense medium D-mesons R_{AA}
- Charm quark diffusion in the hot, dense medium
 D-mesons radial flow and
 v₂, v₃ (not shown)
- Charm quark hadronization via quark coalescence D_s/D^0 ratio Λ_c/D^0 ratio

Quark gluon plasma (QGP)

Quark gluon plasma (QGP):

- Many-body system with partonic degree of freedom
- Emergent properties

The Universe was in this form ~µs after Big Bang

- Lattice QCD predicts phase transition at high temperature/density
- It was proposed to search for and study the properties of QGP via collisions of heavy ions at high energy
- Operating accelerators: RHIC@BNL, LHC@CERN...

Collisions geometry

Central collisions:

- Small impact parameter
- Large N_{part} and N_{coll}
- Large multiplicity

Centrality determined according to the measured (charged) multiplicity

Electromagnetic field in heavy-ion collisions

• Strong EM field accompanies the nuclei in relativistic heavy-ion collisions

 $B \sim \gamma Zeb/R^3 \sim O(10^{14} Tesla)$ @RHIC

• The Lorentz contracted EM field can be expressed in terms of equivalent photon flux *E. Fermi, Z. Phys. 29, 315 (1924)*

 The quasi-real photons can initiate γA or γγ collisions in relativistic heavy-ion collisions

Clear J/ ψ signals at very low p_T

STAR, PRL123, 132302 (2019)

Very-low- $p_T J/\psi$ enhancement at STAR

Significant enhancement of J/ ψ yield at p_T<0.1 GeV/c in (semi-)peripheral Au+Au and U+U collisions, R_{AA} ~ 40

Confirm ALICE observation (PRL116, 222301 (2016))

Momentum transfer squared distribution

• First -t distribution of J/ψ production at low p_T in non-UPC

- Slope = 177 ± 22 (GeV/c)⁻² consistent with expected from coherent photoproduction for an Au nucleus (199 (GeV/c)⁻²)
- The drop at the lowest bin may be an indication of interference $\chi^2/ndf = 4.8/4$

Centrality dependence of yield

- No significant centrality dependence for very-low- $p_T J/\psi$
- Model calculations with all scenarios describe data at b~2R
 - "Nucleus+Spectator" and "Spectator+Nucleus" are favored

Coherent photoproducts in QGP

Novel probe of QGP

- Deconfinement
- EM field

• . . .

Relativistic Heavy Ion Collider @BNL

Large Hadron Collider @CERN

