

Nuclear modification factors of (anti-)hadrons and light (anti-)nuclei in Pb-Pb collisions at $\sqrt{S_{NN}} = 2.76$ TeV Zhilei She, Gang Chen*, Fengxian Liu arXiv:1909.07070v1 [hep-ph] Institute of Geophysics and Geomatics, China University of Geosciences, Wuhan 430074, China

School of Mathematics and Physics, China University of Geosciences, Wuhan 430074, China

Introduction

As an essential measurement, nuclear modification factor R_{AA} of transverse momentum p_T , can be used to investigated the jet quenching effect (parton energy loss) which is the main probe to explore the quarkgluon plasma (QGP) in nucleus-nucleus collisions at RHIC and LHC energies. Also, high energy collision systems can povide information on (anti-)hadrons and (anti-)nuclei production, which is applied as references to study the matter-antimatter asymmetry mechanisms. Experimentally, recent measurement data of R_{AA} in Pb-Pb collision from ALICE and CMS experiments have been published in succession. As for numerical model

aspect, PACIAE+DCPC model was developed to simulate different collision physics systems, can study the quark, hadron and nucleus level. Here we choose this model to first study the R_{AA} of (anti-)hadrons and (anti-)nuclei in nucleus-nucleus collisions.

0 1 2 3 4 5 6 0 1 2 3 4 5 6 0 1 2 3 4 5 6 p_T (GeV/c) p_T (GeV/c) p_T (GeV/c)

Fig.2 The transverse momentum spectra of π , p and d in pp and Pb-Pb collisions at $\sqrt{s_{NN}} = 2.76$ TeV for different centrality bins. The PACIAE+DCPC model results are compatible with the ALICE data.

8

DCPC model

Phys. Rev. C86, 054910 (2012)

(Dynamically constrained phase space coalescence model)

Uncertainty principle:

The yield of a single particle:

$$Y_1 = \int_{H \leq E} \frac{d\vec{q} \, d\vec{p}}{h^3} \quad (2)$$

 $\Delta \vec{q} \Delta \vec{p} \ge h^3 \quad (1)$

The yield of N particles cluster:

$$Y_N = \int \cdots \int_{H \leq E} \frac{d\vec{q}_1 \, d\vec{p}_1 \cdots d\vec{q}_N \, d\vec{p}_N}{h^{3N}} \tag{3}$$

Constraint conditions:

 $m_0 \leqslant m_{inv} \leqslant m_0 + \Delta m \quad (4)$

 $q_{ij} \leq D_0(i \neq j; j = 1, 2, ..., N)$ (5)

Conclusions

- The PACIAE+DCPC model can be sccessfully applied to reproduce the spectra of (anti-)hadrons and (anti-)nuclei up to 6.0 GeV/c in high energy collisions.
- The NFM distributions of (anti-)particles show the similar trend with p_T increase for different centrality bins when $0 < p_T < 6.0$ GeV/c, i.e., first increase, reach a peak, and then decrease. The NFM of hadrons and nuclei, p_T ratio and double ratio R_{AA}^{D} of p-topion and d-to-p, all behave the same with those of their corresponding anti-particles in Pb-Pb collisions.

Fig.3 The nuclear modification factor R_{AA} of (anti-)hadrons and (anti-)nuclei first increases, reaches a peak, and then decreases with p_T for all centralities at $p_T < 6.0$ GeV/c. The behaviors R_{AA} of antiparticles with corresponding particles are found to be similar. The NMF ratios in central collision events are more suppressed than in peripheral collision events.

Appendices

• Nuclear modification factor (NFM)

 $R_{AA}(p_T) = \frac{d^2 N_{ch}^{AA} / d\eta dp_T}{\langle T_{AA} \rangle d^2 \sigma_{ch}^{pp} / d\eta dp_T}$

< T_{AA}> : nuclear overlap function by Glauber model; d^2N_{ch} : charged particles yield per event in A-A collision; $d^2\sigma_{ch}$: charged particle cross section in pp collision; η : pseudorapidity, $\eta = -\ln[\tan(\theta/2)]$

CNPC2019 in CCNU, 2019.10.8-12