Contribution ID: 52

Study of nuclear modification factors of (anti-)hadrons and light (anti-)nuclei in Pb-Pb collisions at √sNN = 2.76 TeV

Wednesday, 9 October 2019 18:00 (1 hour)

The nuclear modification factors (R_{AA}) of π^{\pm} , $p(\bar{p})$, and $d(\bar{d})$ with |y| < 0.5, p < 6.0 GeV/c in peripheral (40-60%) and central (0-10%) lead-lead collisions at $\sqrt{s_{NN}}$ =2.76 TeV have been studied using the parton and hadron cascade (PACIAE) model plus the dynamically constrained phase-space coalescence (DCPC) model. It is found that the distribution of R_{AA} of light (anti-)nuclei d is similar to that of hadrons (π, p) , and the distribution of anti-particles is the same as that of particles.

The suppression of high transverse momentum particles strongly depends on event centrality and mass of the particles, *i.e*, the central collision is more suppressed than the peripheral collision.

Besides, the yield ratios, double ratios R_{AA}^D of $(\bar{d} \text{ to } \bar{p}, \bar{p} \text{ to } \pi^-, d \text{ to } p, p \text{ to } \pi^+)$,

and the coalescence parameter B_2 for (d, \bar{d}) in pp, central and peripheral Pb - Pb collisions are discussed, respectively.

It is observed that the yield ratios and R^D_{AA} of \bar{d} to \bar{p} and \bar{p} to π^-

are also the same with the corresponding values of d to p and p to π^+

in three different collision systems, respectively, suggesting that the suppressions

of matter (π^+, p, d) and the corresponding

antimatter $(\pi^-, \bar{p}, \bar{d})$ has the same character and performance. Our results are comparable to those of experimental data at $p_T < 3.0$ GeV/c.

Abstract Type

Poster

Primary author: Mr SHE, Zhilei (China University of Geosciences(Wuhan))

Co-author: Prof. CHEN, Gang (China University of Geosciences(Wuhan))

Presenter: Mr SHE, Zhilei (China University of Geosciences(Wuhan))

Session Classification: S5: Poster 分会场

Track Classification: S5 分会场: Poster