

²⁹S β缓发质子衰变的实验研究

报告人:钟福鹏 指导老师:林承键 研究员

目录

- 研究背景
- 探测器设置
- 探测器刻度
- 实验结果
 - a)²⁹S的衰变时间谱
 - b)带电粒子谱
 - c) γ谱
 - d) 衰变纲图
 - e)镜像不对称参数
- ・工作总结

研究背景

M. P. fützner et al. Reviews of Modern Physics 84(2012)567.

根据这些奇异核的衰变信息可以帮助我们深入探索核结构,核天体物理(核 素合成过程),镜像核对称性,检验相关核力和壳模型理论。

研究背景

29 S

D. J. Vieira et al., Phys. Rev. C 19, 177 (1979).

右图是D.J.Vieira等人在1979年发表 的²⁹S能级纲图。 实验方法:氦喷; 反应:²⁸Si(³He,2n); 探测器:方硅探测器。

2017年11月RIBLL实验 实验方法: 连续束流模式; 反应: ²⁹S的β缓发质子衰变; 探测器: 双面硅条探测器和Clover 型高纯锗探测器;

实验目的:期望得到更加精确的²⁹S 衰变纲图。

HIRFL-RIBLL1

Heavy Ion Research Facility in Lanzhou (HIRFL)

2019/10/9

探测器设置

探测器刻度

探测器刻度的意义在于<mark>将探测器记录的数据转换为我们熟</mark> 知的物理量。下图为次级束TOF-ΔE二维粒子鉴别图谱。

高斯拟合对应的带电重离子信号; LISE++模拟得到的重离子穿透QSDΔE1的能损。

重离子	峰位	能损(MeV)		
²⁹ S	1663.03	202.34		
²⁸ P	1538.11	186.33		
²⁷ Si	1418.81	171.04		
²⁶ Al	1305.02	156.43		
^{24}Mg	1198.89	132.30		
²³ Na	1024.01	119.55		
²² Ne	928.491	107.72		

探测器刻度

峰位与能量的线性拟合			$\mathbf{y} = \mathbf{a}\mathbf{x} + \mathbf{b}$		
	$QSD\Delta E1[0]$	QSD	а	b	
220 200 180 160 140	v = 0.12922x - 12.422	$QSD\Delta E1[0]$	0.12922	-12.422	
		$QSD\Delta E1[1]$	0.13578	-15.625	
		$QSD\Delta E1[2]$	0.13717	-11.900	
		$QSD\Delta E1[3]$	0.11972	-12.589	
		$QSD\Delta E2[0]$	0.13678	-12.258	
120		$QSD\Delta E2[1]$	0.12937	-9.7266	
100 8(00 1300 1800	$QSD\Delta E2[2]$	0.13394	-8.2319	
	Channel	QSD∆E2[3]	0.13989	-9.4370	

Literature	method	$T_{1/2}$ (ms)
D. J. Vieira	²⁸ Si(³ He, 2n)	187 ± 6
Present work	β -decay of ²⁹ S	189 <u>+</u> 10

2019/10/9

b)带电粒子能谱

上图是本次实验观察到的质子峰,带*号的质子峰是D.J.Vieira实验中没有观测到的质子峰,带**号的质子峰是本次实验指认的末态与D.J.Vieira的实验不符。

2019/10/9

c) γ谱

实验结果

5/2+ 13.790

2019/10/9

2019全国核物理大会

d)

2019/10/9

14

e) 镜像不对称参数: $\delta = ft^+/ft^- - 1$

同位旋对称性破缺的程度可以通过镜向不对称参数 δ 来反映。

					£	log ft	Ref.	δ
				$^{29}\text{S} \rightarrow ^{29}\text{P} 1$	383 keV	5.10(9)	This work	
				$^{29}\text{Al} \rightarrow ^{29}\text{Si}$	1273 keV	5.055(6)	D.E.Alburger	0.008(17)
				$^{29}\text{Al} \rightarrow ^{29}\text{Si}$	1273 keV	5.1	A.D.W.Jones	0
				$^{29}\text{Al} \rightarrow ^{29}\text{Si}$	1273 keV	5.050(5)	M.S.Basunia	0.010(17)
		$5/2^+$ 13790	$^{29}S \rightarrow ^{29}P1$	954 keV	5.78(10)	This word		
3679	$\frac{5/2^{+}}{2}$ β^{-}		$\beta \sim 29$ S	$^{29}\text{Al} \rightarrow ^{29}\text{Si}$	2028 keV	5.739(13)	D.E.Alburger	0.007(15)
²⁹ Al			•	$^{29}\text{Al} \rightarrow ^{29}\text{Si}$	2028 keV	5.7	A.D.W.Jones	0.014
	3/2+	$\log ft$ 2426 5.0 3/2+	$\log ft$	$^{29}\text{Al} \rightarrow ^{29}\text{Si}$	2028 keV	5.733(13)	M.S.Basunia	0.008(15)
	5/2+	$2028 5.7 5/2^+$	1.954 5.78(10)	$^{29}\text{S} \rightarrow ^{29}\text{P}2$	423 keV	5.02(5)	This work	
	2/2+	1273 5.1 $\frac{3/2^+}{2}$	<u>1.383</u> 5.10(9)	$^{29}\text{Al} \rightarrow ^{29}\text{Si}$	2426 keV	5.032(16)	D.E.Alburger	-0.002(7)
	$\frac{3/2^{+}}{1/2^{+}}$	<u>1275</u> 5.1 1/2+		$^{29}\text{Al} \rightarrow ^{29}\text{Si}$	2426 keV	5.0	A.D.W.Jones	0.004
	29	Si 2	²⁹ P	$^{29}\text{Al} \rightarrow ^{29}\text{Si}$	2426 keV	5.026(15)	M.S.Basunia	-0.001(7)

- 基于中科院近物所HIRFL-RIBLL1装置产生的²⁹S次级束束流 注入三个双面硅条探测器,利用带电粒子与γ探测器阵 列,对其衰变性质进行了实验测量。
- •实验测量了²⁹Sβ缓发衰变的质子和γ能谱,抽取了²⁹S的半 衰期,通过质子γ符合重建了²⁹P的衰变纲图,丰富了²⁹S和 ²⁹P的谱学信息。
- •我们的优势在于质子与γ的同时测量,发现了此前D.J. Vieira实验中没有观测到的6个质子峰,指认出能量为3429 keV和3570keV质子峰的衰变末态,确认了2条新能级。
- •通过与理论结果的对比,进一步支持了壳模型sd相互作用的可靠性,验证了²⁹S镜像核衰变的对称性。
- 下一步,通过sd壳层近滴线核衰变的系统学研究,检验核 发展理论模型,探索奇特核结构,寻找更稀有的衰变模 式。

Thank you for your attention !

