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Deep learning nuclear shape deformation
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Nuclear shape deformation

Nuclear ground-state shapes
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Deformed Woods-Saxon

p(r,0,¢) =

P0

® Deformed Woods-Saxon can
parameterize shape deformation
using 2 parameters

® YQO:£(300829—1)
3
Yio = 16+/7 (3500846’—3000826’+3)

° 62 changes shapes vertically, from
oblate (pumpkin-like) to prolate

(egg-like)

e (34 changes shapes horizontally, from
dips to bumps
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The motivation

® Nuclear structure plays an important role in explaining
the experimental data of heavy 1on collisions

e Ultra-central puzzle for anisotropic flow
e Chiral magnetic effect by isobaric collisions jgZiconium vs 33Ruthenium

e Mechanism of initial state entropy deposition

Nuclear structure from heavy ion collisions?



Anisotropic flow of heavy 10n collisions
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Collective interaction - | 4

pressure
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Fig from: Phenomenological Review on Quark—Gluon Plasma: Concepts vs. Observations, By Roman Pasechnik and
Michal Sumbera



Fluctuations from nucleon distributions




Fluctuations from Euler Rotations

(a) tip-tip (b) body-body aligned

high multiplicity, small vy high multiplicity, large vq

(c) body-body crossed (d) tip-body

low multiplicity, small vs low multiplicity, small vs



Training data from Trento + mapping

(B2,B4)=1(0.5,0.2)
(B2,Ba)=(0,0)

fully overlapped collisions

(a) tip-tip (b) body-body aligned
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Vo = koeo + késg + &5 where k2 = 0.2, k5 = 0.1 and 62 provides 10% residual fluctuations
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Key 1dea: regression task that maps image to parameters

Deep neural network

(62764) — (O°570'2)
(52754) — (Ov O)

inputs outputs



Deep neural network

Forward pass f(z,0) Fig from CS231N, Stanford
b;
. cat?
dog?
utput layer
input layer
hidden layer 1 hidden layer 2
Linear operation Non-linear activation function h; = o(z;)
N
(a) Sigmoid (b) ReLU (c) PRelLU
<5 = inwij T bj 1 5 230 5 23>0
1=1 o(z) = 1+ exp(—2) o(2) = { 0, 2<0 o(z) = { az, 2<0
where 0 = {wij, bj} f —/ /
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Deep neural network

network network prediction
frue answer

Input: X =i

L loss function (error)

gradient decent

oL
9—9—6%

local
minimum 00 0
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State-of-the-art pattern recognition

Deep convolution neural network

Convolution Layer
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32x32x3 image
5x5x3 filter

convolve (slide) over all
spatial locations

feature map /

activation map
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State-of-the-art pattern recognition

+ Residual Block
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Revolution of Depth
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‘Research

Kaiming He, Xiangyu Zhang, Shaoqging Ren, & Jian Sun. "Deep Residual Learning for Image Recognition”. arXiv 2015.

(slide from Kaiming He’s recent presentation)
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State-of-the-art pattern recognition

+ Squeeze Excitation block
X X

Residual Residual

HxXWxC
Global foolmg Ix1xC
X
F.. (W) ~ FC C
X U F,, (-) ~ [ ———— Wl X 1X1x—
1 1x1xC < 1xC ResNet Module ¥ r
RelLU 1x1 Xg
H K H Y
FC
1x1xC
w' w . y .
C C y‘/Slf,:mmd 1x1%C
Scale
HXxXWxC
HXWxC
X

SE-ResNet Module

® Global average pooling and dot product to provide extra correlation
between different channels.

® Improve relatively 2-8% over residual network.
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Network structure for nuclear deformation

[ Output Dense(2) ] [ ReLu ] [ ReLu }
[ Global Averagé Pooling -> 512 ] add O add ©
[ Squeeze Excite ] [ Squeeze Excite }
[ 3 Residual Blocks -> 7x7x512 ] T T
[ Batch Norm ] [ Batch Norm }
6 Residual Blocks -> 14x14x256 | o
T [ Conv2D(3x3) ] [ Conv2D(3x3) } i|><
1 C
[ 4 Residual Blocks ->28x28x128 } [ ReLl ] [ ReLy } S
[ 3 Residual Bloc‘ks -> 56x56x64 ] [ Batch Norm ] [ Batch Norm }
[ Conv2D(3x3) -> 56x56x64 ] [ ConVZID(3X3) } [ ConVZID(3X3) ]
T : T :
[ Input(56x56x1) ] X | X |
Regression Network 1 Blue Residual Block 1 Green Residual Block
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network prediction

® Predict well for |fs]

® Not possible to constrain the sign of (s from (ve, dN/dYnorm)

network prediction

ground truth ground truth
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® Results from deep learning implies degeneracy for

By with the same |3s]
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Reason for degeneracy visualized by 2d projection
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® Degenerate due to strong Lorentz
contraction at high energy
collisions.
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What has been learned by the network?

1.0 - (B2, Ba) =(0.5,0.2)

(B2,Ba)=(0,0)
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® Use regions visually attractive to humans?

® Or did i1t find new features?
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Global explanation: what has been learned by each neuron?

Olah, et al., "Feature Visualization", Distill, 2017.
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Edges (layer conv2d0) Textures (layer mixed3a) Patterns (layer mixed4a) Parts (layers mixed4b & mixed4c) Objects (layers mixed4d & mixed4e)

® Shallow layers learn edges, textures
® Intermediate layers learn patterns

® Deep layers learn parts and objects
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Local explanations

e LIME: perturbs input image by masking super pixels (with similar
color), to check the prediction difference

e Class activation map: maps the discriminative regions learned by deep

layers to the input image
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Explanations from LIME

® LIME: occlude super-pixels (pixels with similar color)

Marco Tulio Ribeiro, Sameer Singh, and Carlos Guestrin. "why should I trust you?"
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Explanations from class activation map (CAM)

B. Zhou, A. Khosla, Lapedriza. A., A. Oliva, and A. Torralba. Learning Deep Features for Discrimi-
native Localization. C'VPR, 2016.

® CAM captures roughly the discriminative region for
classification.
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Regression activation mask

2D feature maps weights

’\k/

1 — 4R Of
GradCam—kaxknz::A QA%

2,=1

e c: number of channels
® k: transverse size of the feature map

o A}’ the value at site (i, j) for the nth feature map before the
final output layer.
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Regression attention mask

m = Zwimi, where m; = Gradcam(xz;) > T

(2

_exp —o;]
Zj exp [—o;]’

w; o; = [|f(m; o x;) — f(as)]],
® m: regression attention mask (for aligned inputs)

® Wi importance weight for the 1ith mask

® o, : the prediction difference between original image and the
masked 1mage (discard unimportant regions using 1m; o ;).
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Regression attention mask

|B2| =0.00 |B2| =0.06 1B2| =0.17

S .,

V2/Vomax

|B2] =0.28 |B2] =0.39 |B2] = 0.44

‘s p
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chh/le normed

® Neural network pays attention to fully overlapped collisions and

semi-peripheral collisions.
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Conclusion

® Decep neural network is efficient in verifying whether nuclear
shape deformation 1s encoded 1n the complex output of heavy 10n
collisions, and 1t 1s also successful 1in decoding it.

® First interpretation model for regression task.

® Helps to locate the most relevant features — open the black-box
for knowledge discovery.

® One can apply the same 1dea to electric/weak charge distribution,
neutron skin and short range correlations.

26



