

深度学习核变形因子

Deep learning nuclear shape deformation

Long-Gang Pang with Kai Zhou and Xin-Nian Wang

Based on arXiv:1906.06429

Nuclear shape deformation

credit: Los Alamos National Lab

Deformed Woods-Saxon

$$\rho(r,\theta,\phi) = \frac{\rho_0}{1 + e^{(r - R_0(1 + \beta_2 Y_{20}(\theta) + \beta_4 Y_{40}(\theta)))/a}}$$

• Deformed Woods-Saxon can parameterize shape deformation using 2 parameters

•
$$Y_{20} = \frac{\sqrt{5}}{4\sqrt{\pi}} \left(3\cos^2 \theta - 1 \right)$$

 $Y_{40} = \frac{3}{16\sqrt{\pi}} \left(35\cos^4 \theta - 30\cos^2 \theta + 3 \right)$

- β₂ changes shapes vertically, from oblate (pumpkin-like) to prolate (egg-like)
- β_4 changes shapes horizontally, from dips to bumps

-0.50, -0.2	-0.50, -0.1	-0.50, 0.0	-0.50, 0.1	-0.50, 0.2
-0.25, -0.2	-0.25, -0.1	-0.25, 0.0	-0.25, 0.1	-0.25, 0.2
0.00, -0.2	0.00, -0.1	0.00, 0.0	0.00, 0.1	0.00, 0.2
0.25, -0.2	0.25, -0.1	0.25, 0.0	0.25, 0.1	0.25, 0.2
0.50, -0.2	0.50, -0.1	0.50, 0.0	0.50, 0.1	0.50, 0.2

The motivation

- Nuclear structure plays an important role in explaining the experimental data of heavy ion collisions
 - Ultra-central puzzle for anisotropic flow
 - Chiral magnetic effect by isobaric collisions ${}^{96}_{40}$ Ziconium vs ${}^{96}_{44}$ Ruthenium
 - Mechanism of initial state entropy deposition

Nuclear structure from heavy ion collisions?

Anisotropic flow of heavy ion collisions

Fig from: Phenomenological Review on Quark–Gluon Plasma: Concepts vs. Observations, By Roman Pasechnik and Michal Sumbera

Fluctuations from nucleon distributions

Au

Fluctuations from Euler Rotations

(b) body-body aligned

high multiplicity, large v_2

(c) body-body crossed

(a) tip-tip

low multiplicity, small v_2

(d) tip-body

low multiplicity, small v_2

Training data from Trento + mapping

 $dN_{\rm ch}/d|Y|_{\rm normed}$

 $v_2 = k_2 \varepsilon_2 + k'_2 \varepsilon_2^3 + \delta_2$ where $k_2 = 0.2, k'_2 = 0.1$ and δ_2 provides 10% residual fluctuations $dN_{\rm ch}/dY|_{\rm normed} = \frac{dN_{\rm ch}/dY}{\langle dN_{\rm ch}/dY \rangle_{\rm most \ central}} \approx \frac{s_0}{\langle s_0 \rangle_{\rm most \ central}}$ at mid-rapidity.

Key idea: regression task that maps image to parameters

Deep neural network

inputs

outputs

Deep neural network

Linear operation

Non-linear activation function $h_j = \sigma(z_j)$

$$z_j = \sum_{i=1}^N x_i w_{ij} + b_j$$

where
$$\theta = \{w_{ij}, b_j\}$$

(a) Sigmoid (b) ReLU (c) PReLU

$$\sigma(z) = \frac{1}{1 + \exp(-z)} \qquad \sigma(z) = \begin{cases} z, & z > 0 \\ 0, & z \le 0 \end{cases} \qquad \sigma(z) = \begin{cases} z, & z > 0 \\ az, & z \le 0 \end{cases}$$

Deep neural network

State-of-the-art pattern recognition

Deep convolution neural network + Residual Block + Squeeze Excitation block

Convolution Layer

 $f_{11} = a_{11}k_{11} + a_{12}k_{12} + a_{13}k_{13}$ $a_{21}k_{21} + a_{22}k_{22} + a_{23}k_{23}$ $a_{31}k_{31} + a_{32}k_{32} + a_{33}k_{33}$

feature map /

State-of-the-art pattern recognition

fc 1000

State-of-the-art pattern rec

SE-Inception Module

↓ X

Deep convolution neural network + Residual Block + Squeeze Excitation block

- Global average pooling and dot product to provide extra correlation between different channels.
- Improve relatively 2-8% over residual network.

Network structure for nuclear deformation

Regression Network

1 Blue Residual Block

1 Green Residual Block

Results

- Predict well for $|\beta_2|$
- Not possible to constrain the sign of β_2 from $(v_2, dN/dY_{norm})$
- Results from deep learning implies degeneracy for β_2 with the same $|\beta_2|$

Reason for degeneracy visualized by 2d projection

• Degenerate due to strong Lorentz contraction at high energy collisions.

What has been learned by the network?

- Use regions visually attractive to humans?
- Or did it find new features?

Global explanation: what has been learned by each neuron?

Olah, et al., "Feature Visualization", Distill, 2017.

Edges (layer conv2d0)

Textures (layer mixed3a)

Patterns (layer mixed4a)

Parts (layers mixed4b & mixed4c)

Objects (layers mixed4d & mixed4e)

- Shallow layers learn edges, textures
- Intermediate layers learn patterns
- Deep layers learn parts and objects

Local explanations

- LIME: perturbs input image by masking super pixels (with similar color), to check the prediction difference
- Class activation map: maps the discriminative regions learned by deep layers to the input image

Explanations from LIME

• LIME: occlude super-pixels (pixels with similar color) Marco Tulio Ribeiro, Sameer Singh, and Carlos Guestrin. "why should I trust you?"

Explanations from class activation map (CAM)

B. Zhou, A. Khosla, Lapedriza. A., A. Oliva, and A. Torralba. Learning Deep Features for Discriminative Localization. *CVPR*, 2016.

• CAM captures roughly the discriminative region for classification.

Regression activation mask

- c: number of channels
- k: transverse size of the feature map
- A_{ij}^n : the value at site (i, j) for the nth feature map before the final output layer.

Regression attention mask

$$m = \sum_{i} \omega_{i} m_{i}$$
, where $m_{i} = \operatorname{Gradcam}(x_{i}) > T$

$$w_i = \frac{\exp\left[-\sigma_i\right]}{\sum_j \exp\left[-\sigma_j\right]}, \quad \sigma_i = ||f(m_i \circ x_i) - f(x_i)||,$$

- m: regression attention mask (for aligned inputs)
- ω_i : importance weight for the ith mask
- σ_i : the prediction difference between original image and the masked image (discard unimportant regions using $m_i \circ x_i$).

Regression attention mask

• Neural network pays attention to fully overlapped collisions and semi-peripheral collisions.

- Deep neural network is efficient in verifying whether nuclear shape deformation is encoded in the complex output of heavy ion collisions, and it is also successful in decoding it.
- First interpretation model for regression task.
- Helps to locate the most relevant features open the black-box for knowledge discovery.
- One can apply the same idea to electric/weak charge distribution, neutron skin and short range correlations.