

Dilepton and Direct Virtual Photon Results at RHIC-STAR

Chi Yang 杨驰 Shandong University 山东大学

Electromagnetic Probes in HIC

Dileptons and real photons —— ideal electromagnetic probes

- Suffer no strong interaction
- Produced at all stages of the system evolution
- Bring production information to final state
- Sensitive to electromagnetic processes
- Can probe temperature of the system during its hottest phases

The RHIC-STAR Detector

Good particle identification, uniform acceptance over collision energies

Detector Upgrades for Beam Energy Scan Phase II at RHIC

ChiYang, CNPC2019, Wuhan

2019/10/10

Low Mass Region ($M_{ee} < M_{\varphi}$):

Vector meson in-medium modification ρ broadening: link to χ SR

Intermediate Mass Region ($M_{\varphi} < M_{ee} < M_{J/\psi}$): Thermal probe of QGP $dN/dm_{ee} \sim e^{-m/T}$ Dominant contribution from semi-leptonic decays

High Mass Region ($M_{ee} > M_{J/\psi}$) Primordial emission Drell-Yan process

 J/ψ and Upsilon

Particle Identification

J.D.Brandenburg, NPA 982 (2019) 192 T.C.Huang, et.al., NIM.A 833 (2016) 88-93

Dilepton in p+p – Baseline

Dielectron

Dimuon

- In p+p collisions, the data are consistent with vacuum ρ distribution
- Hadronic cocktail simultaneously describe data at all mass regions
- Consistent with our understanding for p+p collisions no "hot" contribution
- Cocktail simulation can be trusted

Dielectron in Au+Au – Low Mass Excess

Au+Au 19.6GeV

Au+Au 200GeV

- In ρ -like region, clear excesses are observed from RHIC top energy to low energy
- Consistent with ho broadening scenario within uncertainties

STAR, PLB 750 (2015) 64-71 STAR, PRL 113 (2014) 022301

Dielectron in Au+Au – Low Mass Excess

STAR, arXiv:1810.10159

In Beam Energy Scan Phase I

Low mass excesses are consistent with ρ broadening scenario within uncertainties from RHIC top energy down to 19.6GeV

Dielectron in Beam Energy Scan

Low-mass e⁺e⁻ emission is effected by T, total baryon density, lifetime

- Excess yield normalized by dN_{ch}/dy is proportional to lifetime of the medium
- Constant excess along constant total baryon density
- Emission rate is dominant in the T_c region
- More clear pictures of the excess versus lifetime and total baryon density in BES-II

Direct Virtual Photon Yield

STAR, PLB 770 (2017) 451-458

Thermal photons can be observed

Compared to p+p reference (from PHENIX collaboration)

Chi Yang, CNPC2019, Wuhan

Via internal conversion method

Direct Virtual Photon Yield

STAR, PLB 770 (2017) 451-458 10^{2} $0-20\% \times 10^{2}$ 10 Au+Au 200 GeV $20-40\% \times 10^{1}$ ×10⁻¹ **10**⁻¹ $d^{2}N/(2\pi p_{T}dp_{T}dy) ((GeV/c)^{2})$ 50-80% ×10⁻² 10 aquet calculation 10 Rapp calculation **10**⁻ **10**⁻ 10^{-7} 10^{-8} **10⁻⁹** 10^{-10} 10-11 10⁻¹² 2 3 5 6 7 8 9 4 10 p_T (GeV/c)

Model predictions considering:

- thermal radiation
- in-medium ρ meson
- other mesonic interactions in the hadronic gas
- primordial contributions from the initial hard parton scattering

Model calculations:

- Consistent with the yield within uncertainties except some bins in 6o-8o%
- Simultaneously describe both dielectron and direct virtual photon yields

Coherent Low $p_T e^+e^-$ in Au+Au and U+U

- Significant enhancement
- Excesses concentrate below p_T ≈ 0.15 GeV/c
- Data are consistent with hadronic expectation when $p_T > 0.15$ GeV/c

Coherent Low $p_T e^+e^-$ in Au+Au and U+U

- Coherent photon-photon and photon-nucleon interactions in HHIC!
- A new topic in dilepton analysis, challenge to theory on the understanding of coherent photon-photon and photon-nucleon interactions
- May also be observed in dimuon channel

To Go Further

In UPC

- Provide baseline
- Exclusive and clean e⁺e⁻ detection (STAR ultra-peripheral collisions provide opportunities)
- Individual e should be preferentially aligned longitudinally and the azimuthal angle between the e⁺e⁻ pair momentum and the individual e momenta should display modulations (*Polarized photon-photon collisions, C. Li, J. Zhou, Y. Zhou, PLB 795* (2019) 576–580 predicted 10~20% 4-th order modulation at STAR)

In HHIC

- Study extreme magnetic field and potential medium effect
- Different centralities and species (*d*+*Au*, *isobaric data*)
- Kinematics WRT B-field (reaction plane), mass, p_T

Current and Future Opportunities on EM Probes at STAR

- 1.2 B Au+Au 54 GeV and 1.5 B Au+Au 27 GeV data collected in Run17 -- Smaller heavy flavor semi-leptonic decay in IMR
- 3.1 B isobaric collision data collected in Run 18 -- Same A, different Z – similar hadronic interaction, different initial magnetic field

BES-II in Run 19, Run 20 and Run 21

-- Different total baryon densities, scan in high total baryon density region

Beyond 2020+

 Mid-rapidity: e⁺e⁻ measurement at μ_B~o Link to chiral symmetry restoration

 Precise ρ spectra

 Thermal radiation from QGP

 IMR slope
 Direct virtual photon at RHIC top energy
 Thermal photon slope

Uncertainty prediction with iTPC + 4 billion events

Summary

Electromagnetic probes provide unique ways to study the hot and dense medium over the whole evolution:

Dilepton:

- *ρ* broadening scenario describes the excesses in LMR
 - -- Measurements are from RHIC top energy down to 19.6 GeV in BES-I
- Coherent low p_T dielectron production observed in HHIC
 - -- Need further study in both UPC and HHIC

Direct virtual photons:

- Thermal photons observed in Au+Au collisions
 - -- Model calculations simultaneously describe both dielectron and direct virtual photon results
 - -- Need to further study the thermal photon slope and collision system dependence

Lots of excellent opportunities on EM probes research at STAR, keep tuned!

Backup

Electron-positron Pairs from Internal Conversion

• Relation between real photon yield and the associated e⁺e⁻ pairs:

