第十七届全国核物理大会 (CNPC 2019) Oct. 8-12, 2019, Wuhan, Hubei, China

Charm and beauty isolation in heavy flavor electron measurements at RHIC

Fan Si (司凡)

State Key Laboratory of Particle Detection and Electronics University of Science and Technology of China (USTC)

Collaborators: Xiaolong Chen, Yifei Zhang

Outline

• Introduction

Method and results

- Semileptonic decay simulation
- Beauty contribution extraction
- c \rightarrow e and b \rightarrow e R_{AA}
- c \rightarrow e and b \rightarrow e v_2

Summary and conclusion

Introduction

Heavy quarks (charm and beauty):

- Mainly produced in hard scatterings at the early stage of HIC.
- Experience the full time evolution of QGP.
- Production yields can be evaluated by pQCD ($m_{c, b} >> \Lambda_{QCD}$).
- Ideal probes for medium properties, diffusion coefficient, etc..

QGP dynamics

• Energy loss

- Elastic (collisional) and inelastic (radiative) medium effect.
- Theoretical mass dependent energy loss: $\Delta E_{u,d,s} > \Delta E_c > \Delta E_b$.

• In-medium energy loss suppresses $R_{AA} < 1$ at moderate-to-high p_{T} .

QGP dynamics

- Flow and thermalization
 - Following collectivity.
 - Azimuthal anisotropy.

- Elliptic flow $v_2 \equiv \langle \cos[2(\phi \Psi_R)] \rangle$ (2nd Fourier coefficient) • $E \frac{d^3 N}{d^3 p} = \frac{1}{2\pi} \frac{d^2 N}{p_T d p_T d y} \{1 + \sum_{n=1}^{\infty} 2v_n \cos[n(\phi - \Psi_R)]\}$
 - Description of collective motion and thermalization of partons.
 - Azimuthal anisotropy determines $v_2 > 0$ at low-to-moderate p_T .

What about beauty?

• Comparable R_{AA} and v_2 of light flavor and charmed hadrons.

- Similar energy loss and thermalization: Charm seems like light quarks.
- $m_{\rm b} \gtrsim 3m_{\rm c}$: Different properties of beauty in the medium?

CNPC 2019, Oct. 8-12, Wuhan

RHIC detectors

Fan Si

Data-driven method

• Electrons are able to show the properties of quarks kept by hadrons. PRD 98, 030001 (2018)

Charmed hadron	<i>cτ</i> (μm)	Mass (MeV/ c^2)	Branching ratio $(\rightarrow eX)$
D^0	122.9	1864.83 ± 0.05	(6.49 ±0.11)%
D^\pm	311.8	1869.65 ± 0.05	(16.07 ± 0.30) %
D _s	151.2	1968.34 ±0.07	(6.5 ±0.4)%
$\Lambda_{\rm c}$	59.9	2286.46 ± 0.14	(4.5 ±1.7)%
J/ψ	2.13×10^{-6}	3096.900 ± 0.006	(5.971 ± 0.032) %

Fan Si

Spectra of charmed hadrons

- \circ D^0, D_s and J/ ψ : parameterized and extrapolated by Levy and power-law functions
- D[±]: scaling D⁰ spectrum by D[±]/D⁰ ratio (from 0-10%)
- Λ_c : mean of 4 models (Ko: di-&three-quark, Greco, Tshingua)
- Uncertainty bands from parameterization and different models are also input.

Semileptonic decay simulation

- Output spectra are normalized by measured cross sections of respective charmed hadrons and branching ratios.
- Electron spectra from D_s , Λ_c and J/ ψ are scaled by N_{bin} ratios to 0-80% centrality.
- \circ c \rightarrow e spectrum: summed contribution of charmed hadrons.
- b \rightarrow e spectrum: extracted from inclusive HFE.

Fan Si

B-meson spectrum unfolding

Attempt to obtain B-meson spectrum from $b \rightarrow e$ extraction.

- Assume B-meson spectrum follows Levy function.
- Apply iteration until its electron spectrum fits the b—e data points. ($\chi^2/ndf = 16.55/19$)
- Decay check: change each parameter (step: 5%) of the Bmeson spectrum function and calculate χ^2 .

Beauty Contribution

•
$$f^{b \to e} = \frac{b \to e}{HFE} = 1 - f^{c \to e}$$

- At $p_{\rm T} \sim 3.5 \text{ GeV}/c$, $f^{b \rightarrow e} \sim f^{c \rightarrow e} \sim 50\%$.
- $f_{AA}^{b \to e}$ is systematically higher than $f_{pp}^{b \to e}$.
- Charm is more strongly suppressed than beauty due to the medium effect in Au+Au collisions.

 R_{AA} isolation

•
$$R_{AA}^{b \to e} = \frac{f_{AA}^{b \to e}}{f_{pp}^{b \to e}} R_{AA}^{HFE}$$

 $R_{AA}^{c \to e} = \frac{1 - f_{AA}^{b \to e}}{1 - f_{pp}^{b \to e}} R_{AA}^{HFE}$

• Cross-check: $b(c) \rightarrow e/FONLL$ obtained by the definition.

R_{AA} isolation

- Consistent with the template analysis with STAR HFT and show an improved precision.
- b—e: roughly consistent with DUKE model prediction c—e: a stronger suppression at $p_T > 4 \text{ GeV}/c$.
- An agreement with mass dependent energy loss: $\Delta E_{\rm c} > \Delta E_{\rm b}$.

R_{AA} isolation

- An agreement with PHENIX ones within uncertainties.
- Improve the precision.
- Isolate charm and beauty.
- Show clear mass dependence of energy loss.

v_2 isolation method

Azimuthal angle (φ) distribution: dN/dφ = 1 + 2v₂ cos(2φ).
v₂^{c→e}: average of v₂^{D→e} and v₂<sup>Λ_c→e</sub> weighted by relative yields.
Same as v₂^{HFE} ⇒ v₂^{b→e} = v₂^{HFE} - (1-f_{AA}^{b→e})v₂^{c→e} / f_{AA}^{b→e}
</sup>

v_2 parameterization

• Parameterization function:

$$\nu_{2}(p_{\mathrm{T}}) = \frac{p_{0}n}{1 + \exp\left(\frac{p_{1} - \frac{p_{\mathrm{T}}}{n}}{p_{2}}\right)} - \frac{p_{0}n}{1 + \exp\left(\frac{p_{1}}{p_{2}}\right)} - p_{3}np_{\mathrm{T}}$$

• The uncertainty band of $D^0 v_2$ from parameterization is input and propagated to the electron v_2 spectra.

v_2 isolation

- Charm seems like light quarks ($c \rightarrow e$ and $\phi \rightarrow e$).
- At $p_{\rm T} < 4 \text{ GeV}/c$, $v_2^{b \to e}$ is dramatically smaller than $v_2^{c \to e}$.
- At 2.5 < p_T < 4.5 GeV/c, $v_2^{b \rightarrow e}$ deviates the curve assuming B-meson v_2 follows NCQ scaling (98.2%, $\chi^2/ndf = 11.92/4$).
- Beauty is unlikely thermalized and seems too heavy to be moved to follow the collectivity at RHIC.

Fan Si

v_2 isolation

- An agreement with PHENIX results.
- Improve the precision.
- Show clear difference between charm and beauty.

Summary

- Improved electron R_{AA} and v_2 are obtained from $f^{b \rightarrow e}$ via the data-driven method taking advantage of the largest statistics and best precision of open charm measurements.
- Stronger suppression of charm than beauty predicted by mass dependent energy loss is supported by our R_{AA} results.
- Charm follows the collective motion like light quarks, which is shown by the agreement between $v_2^{c \to e}$ and $v_2^{\phi \to e}$.
- Non-zero $v_2^{b \to e}$ is observed at $p_T > 3 \text{ GeV}/c$ at RHIC.
- Less flow of b—e is observed than $v_2^{c \to e}$ at $p_T < 4 \text{ GeV}/c$ and $v_2^{b \to e}$ NCQ hypothesis at $2.5 < p_T < 4.5 \text{ GeV}/c$, which indicates that beauty is unlikely thermalized in Au+Au collisions at $\sqrt{s_{NN}} = 200 \text{ GeV}$.

Thank you!

Effect of extrapolation

- The proportion of the electrons decaying from D⁰ at $p_T > 10$ GeV/c (unmeasured region) in each electron p_T bin.
- 100% electrons at $p_{\rm T} = 9.5 \text{ GeV}/c$ and 16.8% at $p_{\rm T} = 6 \text{ GeV}/c$.
- Limited effect of D⁰ $p_{\rm T}$ > 10 GeV/*c* on electrons $p_{\rm T}$ < 6 GeV/*c*.
- The total proportion of electrons at $p_{\rm T} < 10~{\rm GeV}/c$ decaying from D⁰ at $p_{\rm T} > 10~{\rm GeV}/c$ is only 1.2×10^{-5} .

