

Tale of coherent photon products: from UPC to HHIC

Wangmei Zha

University of Science and Technology of China

Collaborators: Lijuan Ruan, Zebo Tang, Zhangbu Xu, Shuai Yang, Chi Yang, Spencer Klein, Rongrong Ma, Qian Yang, Zhen Liu, Zehua Cao

第十七届全国核物理大会暨第十三次会员代表大会 华中师范大学,武汉,2019年10月8-12 日

Coherent limitation: $Q^2 \le 1/R^2 \Rightarrow$ quasi-real ! Photon four momentum: $q^u = (\omega, \vec{q}_T, \omega/\nu)$ $Q^2 = \frac{\omega^2}{\gamma^2} + q_T^2$ $\omega \le \omega_{max} \sim \frac{\gamma}{R}$

Coherent limitation: $Q^2 \leq 1/R^2 \Rightarrow$ quasi-real !

• View photons as "partons" being present with fast moving ions!

Coherent limitation: $Q^2 \le 1/R^2 \Rightarrow$ quasi-real ! Photon four momentum: $q^u = (\omega, \vec{q}_T, \omega/\nu)$ $Q^2 = \frac{\omega^2}{\gamma^2} + q_T^2$ $\omega \le \omega_{max} \sim \frac{\gamma}{R}$

View photons as "partons" being present with fast moving ions!
 The extent of photons swarming about

the ions:

Physics Today 70, 10, 40 (2017)

The radius of nuclear matter $R_{Nuc} \sim 6.3$ fm (Au) $R_{photons} >> R_{Nuc}$

Take the photoproduction of ρ (Au+Au 200 GeV)in ultra-peripheral collisions (UPCs) as example: $\langle R_{producton} \rangle \sim 40$ fm

 This large flux of quasi-real photons makes a hadron collider also a photon collider!

- ✓ Photon-nucleus interactions: Vector meson
- ✓ Photon-photon interactions: dileptons …

 This large flux of quasi-real photons makes a hadron collider also a photon collider!

- ✓ Photon-nucleus interactions: Vector meson
- ✓ Photon-photon interactions: dileptons ...
- Conventionally believed to be only exist in ultra-peripheral collisions (UPC) to keep "coherent"!

- Vector meson production:

 chargeless 'Pomeron exchange'
 - Light meson production is usually treated via vector meson dominance model:
 ρ, direct π⁺π⁻, ω....
 - Heavy quarkonia production could be treated with pQCD : J/ψ, ψ', Y(1S), Y(2S), Y(3S)...

 Heavy quarkonia production could be treated with pQCD : J/ψ, ψ', Y(1S), Y(2S), Y(3S)...

第十七届全国核物理大会 - 查王妹

0.01 t (GeV/c)²

Vector meson production: chargeless 'Pomeron exchange' Light meson production is usually treated via vector meson dominance model: ρ, direct π⁺π⁻, ω.... Heavy quarkonia production

- Heavy quarkonia production could be treated with pQCD: J/ψ, ψ', Y(1S), Y(2S), Y(3S)...
- Sensitive to the gluon distribution:

$$\frac{d\sigma(\gamma A \to VA)}{dt} \bigg|_{t=0} = \frac{\alpha_s^2 \Gamma_{ee}}{3\alpha M_V^5} 16\pi^3 \left[x G_A(x, Q^2) \right]$$

$$x = \frac{M_V e^{\pm y}}{\sqrt{s}} \quad Q^2 = M_V^2 / 4$$

Nuclear shadowing from J/ψ measurements in UPCs

Various precise measurements! Powerful to constrain nPDF

Nuclear shadowing from J/ ψ measurements in UPCs

- The UPC measurements dramatically reduce the uncertainty band of EPPS16 and nCTEQ15 PDF sets.
- Significant shadowing effect has been observed in both PDF sets at small x.

Please see Zehua Cao's talk for detail Aug. 19th Parallel I.5 15:00

- Significant enhancement of J/ψ yield observed in p_T interval 0 – 0.3 GeV/c for peripheral collisions (50 – 90%).
- Can not be described by hadronic production modified by the hot medium or cold nuclear matter effects!

- Significant enhancement of J/ψ yield observed in p_T interval 0 – 0.3 GeV/c for peripheral collisions (50 – 90%).
- Can not be described by hadronic production modified by the hot medium or cold nuclear matter effects!

Origin from coherent photon-nucleus interactions?

PRL 123 (2019) 132302

PRL 123 (2019) 132302

PRL 123 (2019) 132302

 Significant enhancement of J/ψ yield observed at p_T interval 0 – 0.2 GeV/c for peripheral collisions (40 – 80 %)!

No significant difference between Au+Au and U+U collisions.

The excess yield and dN/dt distribution

The excess yield and dN/dt distribution

- Low p_T J/ψ from hadronic production is expected to increase dramatically with N_{part}.
- No significant centrality dependence of the excess yield!

The excess yield and dN/dt distribution

- Low $p_T J/\psi$ from hadronic production is expected to increase dramatically with N_{part}.
- No significant centrality dependence of the excess yield!

- Similar structure to that in UPC case!
- Indication of interference!
 - ✓ Interference shape from calculation PRC 97 (2018) 044910
- Similar slope parameter!
 - ✓ Slope from STARLIGHT prediction in UPC case - 196 (GeV/c)⁻²
 - ✓ Slope w/o the first point: 177 ± 23 (GeV/c)⁻² $\chi^2/NDF = 1.7/2$

Comparison with theoretical calculations

Comparison with theoretical calculations

W. Zha etal., PRC 99, (2019) 061901(R)

How coherence keep? --- Time scale matters Collision (production) time > GeV Fragment of spectator and nucleus excitation ~ MeV

Pomeron emittei

Comparison with theoretical calculations

W. Zha etal., PRC **97** (2018) 044910 W. Zha etal., PRC **99**, (2019) 061901(R)

- All scenarios describe the data very well in peripheral collisions!
- Nuclues+Nucleus: overestimate the data in semi-central collisions.
- Spectator+Spectator: under predict the data in semi-central collisions.
- To distinguish the different scenarios, measurements at central collisions are needed!

• Test QED --- $\gamma\gamma \rightarrow$ Dileptons

 \checkmark Z α ~ 0.6, so perturbation theory might fail

 Data is in excellent agreement with lowest order QED

STAR, PRC 70 (2004) 031902

• Test QED --- $\gamma\gamma \rightarrow$ Dileptons

 \checkmark Z α ~ 0.6, so perturbation theory might fail

 Data is in excellent agreement with lowest order QED

To study the meson spectroscopy

meson	mass [MeV]	$\sigma^{RHIC}~[{\rm mb}]$	$\sigma^{LHC} \ [\text{mb}]$
π_0	134	4.9	28
η	547	1.0	16
η'	958	0.75	21
$f_2(1270)$	1275	0.54	22
$a_2(1320)$	1318	0.19	8.2
η_c	2981	3.3×10^{-3}	0.61
χ_{0c}	3415	0.63×10^{-3}	0.16
χ_{2c}	3556	0.59×10^{-3}	0.15

No measurements in UPCs yet!

Ann. Rev. Nucl. Part. Sci.**55**:271 (2005)

STAR, PRC 70 (2004) 031902

• Test QED --- $\gamma\gamma \rightarrow$ Dileptons

 \checkmark Z α ~ 0.6, so perturbation theory might fail

 Data is in excellent agreement with lowest order QED

To study the meson spectroscopy

meson	mass $[MeV]$	$\sigma^{RHIC}~[{\rm mb}]$	$\sigma^{LHC} \ [\text{mb}]$
π_0	134	4.9	28
η	547	1.0	16
η'	958	0.75	21
$f_2(1270)$	1275	0.54	22
$a_2(1320)$	1318	0.19	8.2
η_c	2981	3.3×10^{-3}	0.61
χ_{0c}	3415	0.63×10^{-3}	0.16
χ_{2c}	3556	0.59×10^{-3}	0.15

 From "virtual" to "real"
 ✓ Light-by-light scattering seen by ATLAS

No measurements in UPCs yet!

Ann. Rev. Nucl. Part. Sci.**55**:271 (2005)

Nature Phys. 13 (2017) 852 PRL **123** (2019) 052001

How about the contribution in HHIC?

 Significant excess in 60-80% central Au + Au and U + U collisions for the whole invariant mass range!

How about the contribution in HHIC?

- Significant excess in 60-80% central Au + Au and U + U collisions for the whole invariant mass range!
- The excess can be described by the coherent photon-photon process!

How about the contribution in HHIC?

- Significant excess in 60-80% central Au + Au and U + U collisions for the whole invariant mass range!
- The excess can be described by the coherent photon-photon process!

The puzzle: pair p_T broadening

- The equivalent photon approximation could not describe the pair p_T distribution
- Possible medium effects --- magnetic field trapped in the QGP?

The puzzle: pair p_T broadening

EPA approach

The photon k_T spectrum for fixed k: The final-state p_T is the vector sum of the two photon.

$$\frac{dN}{dk_{\perp}} = \frac{2Z^2 \alpha F^2 (k_{\perp}^2 + k^2 / \gamma^2) k_{\perp}^3}{\pi [k_{\perp}^2 + k^2 / \gamma^2]^2}$$

No impact parameter dependence!

Fail to reproduce the pair p_T !

The initial impact parameter dependence

The initial impact parameter dependence

The initial impact parameter dependence

Successfully reproduce the centrality dependence of acoplanarity

Summary

• Excess of J/ψ at very low p_T !

✓ Consistent with coherent photonuclear production in HHIC!

Excess of dielectron at very low p_T!

✓ Consistent with coherent photon-photon production in HHIC!

• More coherent photon products are promising in HHIC!

Outlook

Recover the impact parameter dependence: gEPA

$$\begin{split} A_{1}^{\mu}(k_{1},b) &= -2\pi Z_{1} e \, e^{\mathrm{i}k_{1}^{\tau} b_{\tau}} \, \delta(k_{1}^{\nu} u_{1\nu}) \, \frac{F(-k_{1}^{\rho} k_{1\rho})}{k_{1}^{\sigma} k_{1\sigma}} \, u_{1}^{\mu} \\ A_{2}^{\mu}(k_{2},0) &= -2\pi Z_{2} e \, \delta(k_{2}^{\rho} u_{2\rho}) \, \frac{F(-k_{2}^{\rho} k_{2\rho})}{k_{2}^{\sigma} k_{2\sigma}} \, u_{2}^{\mu} \\ S(P\alpha,\mathbf{b}) &= \int \frac{d^{4} k_{1}}{(2\pi)^{4}} \int \frac{d^{4} k_{2}}{(2\pi)^{4}} \, \left[A_{1}^{\mu}(k_{1},\mathbf{b}) \, \Gamma_{\mu\nu}(k_{1}k_{2};P\alpha) \, A_{2}^{\nu}(k_{2},0)\right] (2\pi)^{4} \delta^{4}(k_{1}+k_{2}-P) \\ \sigma &= \int d^{2} b \, \int |S(P\alpha;\mathbf{b})|^{2} \frac{d^{4} P}{(2\pi)^{4}} \, d\alpha \qquad \text{Impact parameter} \\ \sigma &= 16 \frac{Z^{4} e^{4}}{(4\pi)^{2}} \int d^{2} b \, \int \frac{d\omega_{1}}{\omega_{1}} \int \frac{d\omega_{2}}{\omega_{2}} \int \frac{d^{2} k_{1\perp}}{(2\pi)^{2}} \int \frac{d^{2} k_{2\perp}}{(2\pi)^{2}} \int \frac{d^{2} q_{\perp}}{(2\pi)^{2}} e^{-\mathrm{i}\mathbf{b}\cdot\mathbf{q}_{\perp}} \end{split}$$

Phys. Rev. C47 (1993) 2308-2319

$$\begin{split} & \times \mathcal{F}_{1}(\mathbf{k}_{1\perp},\omega_{1}) \, \mathcal{F}_{2}(\mathbf{k}_{2\perp},\omega_{2}) \, \mathcal{F}_{1}^{*}(\mathbf{k}_{1\perp}-\mathbf{q}_{\perp},\omega_{1}) \, \mathcal{F}_{2}^{*}(\mathbf{k}_{2\perp}+\mathbf{q}_{\perp},\omega_{2}) \\ & \times \{ (\mathbf{k}_{1\perp}\cdot\mathbf{k}_{2\perp}) \, ((\mathbf{k}_{1\perp}-\mathbf{q}_{\perp})\cdot(\mathbf{k}_{2\perp}+\mathbf{q}_{\perp})) \, \sigma_{s}(\omega_{1},\omega_{2}) \\ & + (\mathbf{k}_{1\perp}\times\mathbf{k}_{2\perp}) \cdot ((\mathbf{k}_{1\perp}-\mathbf{q}_{\perp})\times(\mathbf{k}_{2\perp}+\mathbf{q}_{\perp})) \, \sigma_{ps}(\omega_{1},\omega_{2}) \} \quad . \end{split}$$

The dilepton cross section from two real photons

第十七届全国核物理大会 - 查王妹

The results

The approach describes the data reasonably well!

The phase shift matters

Without the phase shift, the approach can not describe the data! However, we can not find the physical meaning for the additional phase shift.

One check:

Replace the cross section of dilepton production in the gEPA equation with the lowest order feynman diagram

The lowest order Feynman diagram

$$\begin{split} \sum_{s} |M|^{2} &= (Z\alpha)^{4} \frac{4}{\beta^{2}} \int d^{2} \Delta q_{1} d^{2} q_{1} \ [N_{0} N_{1} N_{3} N_{4}]^{-1} \exp(i\Delta \vec{q}_{1} \cdot \vec{b}) \\ & \times \mathrm{Tr} \bigg\{ (\not\!\!p_{-} + m) \left[N_{2D}^{-1} \, \psi^{(1)}(\not\!\!p_{-} - \not\!\!q_{1} + m) \, \psi^{(2)} + N_{2X}^{-1} \, \psi^{(2)}(\not\!\!q_{1} - \not\!\!p_{+} + m) \, \psi^{(1)} \right] \\ & \times (\not\!\!p_{+} - m) \left[N_{5D}^{-1} \, \psi^{(2)}(\not\!\!p_{-} - \not\!\!q_{1}' + m) \, \psi^{(1)} + N_{5X}^{-1} \, \psi^{(1)}(\not\!\!q_{1}' - \not\!\!p_{+} + m) \, \psi^{(2)} \right] \bigg\} \end{split}$$

Phys. Rev. A51 (1995) 1874-1882

Linear polarization for photons

