Exploring the phase transition of strongly interacting matter with density fluctuations

邵国运 西安交通大学

Based on PRD 100, 104020 (2019), EPJC 78, 138 (2018) & work in progress

I. Introduction

QCD phase diagram ?

- Lattice QCD
- DSE
- FRG
- Hadron-quark two phase model
- Effective quark model: e.g., PNJL, QMC

• Key issues:

- Location of the critical end point of chiral phase transition?
- *Boundaries* of the first-order transition?
- Phases of QCD at high density?

Exploring the phase structure with heavy-ion collisions
 Evolution of a heavy-ion collision

- Deconfinement
- Hadronization
- Chemical freeze-out
 - inelastic collisions cease, chemical composition is fixed (ratios and fluctuations)
- Kinetic freeze-out:

elastic collisions cease (spectra and correlation crease)

Statistical thermal model (HRG model): hypothesis of hadron abundance in equilibrium $\partial \ln Z_i = g_i V \int_{-\infty}^{\infty} p^2 dp$

$$\mathbf{V}_i = -T \frac{\partial \ln \mathbf{Z}_i}{\partial \mu} = \frac{g_i \mathbf{V}}{2\pi^2} \int_0^{\infty} \frac{p \, \mathrm{d}p}{\exp[(E_i - \mu_i)/T] \pm 1}$$

- Particle counting (average of many events) •
- Fit to hadron yields (parameters T, μ ,V)
- Fit to hadron ratios (cancels out V)

□ Mapping the chemical freeze-out curve

T (MeV)

 Changing collision energy, different chemical freeze-out conditions can be reached

□ Fluctuations at chemical freeze-out

- Fluctuations of conserved quantities are sensitive observables to study a phase transition, in particular the critical phenomenon
 Critical opalescence in CO₂ J.V. Sengers, A.L Sengers, Chem. Eng. News, June 10, 104–118, 1968
- Drastic fluctuations in the critical region
- Can we observe signals of criticality and/or the chiral first-order transition in HICs?

- Moments and cumulants are mathematical measures of "shape" of a distribution which probe the fluctuation of observables.
 - **\checkmark** Moments: mean (*M*), standard deviation (*σ*), skewness (*S*) and kurtosis (κ).
 - \checkmark S and κ are non-gaussian fluctuations.

• "shape" of distribution along CFL curve reflecting the phase transition

II. QCD phase structure and density fluctuations

STAR Preliminary result of the netproton kurtosis

- Non-monotonic energy dependence below 39 GeV
- Large deviation from the baseline

Consistent with the prediction of first order transition with a CEP

M. Stephanov, PRL107, 052301(2011); J. Phys. G: 38, 124147 (2011).

Phase structure and net-baryon number fluctuations in the PNJL model

Net-baryon number kurtosis

- Divergence at the CEP
- Finite for the first-order phase transition
- Minus value along the crossover line in the vicinity of CEP

G.Y. SHAO et al, EPJC 78, 138 (2018)

Net-baryon number skewness

X.Luo (STAR), PoS CPOD2014, 019 (2014)

BES II & Fixed Target experiments

- Locating the CEP
- First-order phase transition
- Turn-off of QGP signatures

□ Other planned experiments

- The nonequilibrium effect of the chiral first-order transition in an expanding system
- Spinodal instability maybe trigged (Steinheimer, Randrup, V. Koch Phys. Rev. Lett. 109, 212301 (2012) Phys. Rev. C. 96, 034907(2017).
- Fluctuations in the metastable and unstable phase?
- Final signals in observation?

Spinodal structure of the first order transition

Skewness and kurtosis

Critical exponents at the CEP and spinodal line at mean field level

□ Critical exponents at the CEP

• Four standard thermodynamical critical exponents

$$egin{aligned} C_{
ho} \sim & |T-T_c|^{-lpha} & \chi_2 \sim & (T-T_c)^{-\gamma} \ \Delta
ho \sim & (T_c-T)^eta &
ho -
ho_c \sim & (\mu-\mu_c)^rac{1}{\delta} \end{aligned}$$

We also calcualte $\chi_2 \sim |\mu - \mu_c|^{-\nu} \quad S\sigma \sim |\mu - \mu_c|^{-\zeta}$ $\kappa \sigma^2 \sim |\mu - \mu_c|^{-\eta}$

η

2.08

• α,	β, β, γ	΄, δ	are consistent	with the	Landau-	Ginzburg	theory in	n the mean	field
------	------------------------	------	----------------	----------	---------	----------	-----------	------------	-------

- $\zeta \simeq 1 < \eta \simeq 2, {\rm kutosis}$ is more sensitive than skewness

Critical exponents along the spinodal line

$$\chi_2 \sim \left|\mu-\mu_0
ight|^{-
u'} \qquad S\sigma \sim \left|\mu-\mu_0
ight|^{-\zeta'} \quad \kappa\sigma^2 \sim \left|\mu-\mu_0
ight|^{-\eta'}$$

- $\zeta' = 1.02 \pm 0.02$ and $\eta' = 2.08 \pm 0.02$, keeping constants along the spinodal line
- The same divergence as at CEP
- $v' = 0.52 \pm 0.01$ for T < 110 MeV. A rapid increase only occurs near the critical region, and v' = 0.7 at the CEP.

Nuclear liquid-gas transition and beyond

- Negative in the blue area
- Positive in the rest region
- Diverges at the CEP

- Similar structure to the chiral firstorder transition
- But at much lower density

net-baryon number skewness

III. Magnetized quark matter:

Deformed QCD phase structure in the presence of a magnetic field

- Chiral magnetic effect
- Chiral separation effect
- Electrical conductivity of the QGP medium
- •
- (Inverse) Magnetic catalysis of chiral condensate
- ✓ Deformation of the phase structure with a magnetic field?

First-order phase transition with a magnetic field

G.Y. SHAO et al, PRD 100, 104020 (2019)

- First order-phase transition at different temperatures
 - Becoming complicated with the decrease of temperature
 - In particular, zigzag behavior for some magnetic field strength possibly reachable at RHIC

Why the zigzag shape?

□ Landau quantization

• More Landau levels of *d* quark being filled than *u* quark due to different electric charges

- A twist appearing when quarks occupy a new Landau level
- More Landau levels being filled for smaller *eB*, responsible for the complicated phase structure

□ Phase transition under different magnetic fields (T=5MeV)

Deformed phase diagram under different magnetic fields

Entropy oscillation

- Net-baryon number fluctuations can be used to explore the QCD phase structure
- In the first-order transition region, fluctuations from the metastable and unstable region possibly affect the final statistical distributions. More simulations are needed to predict the signals of the first-order transition and the energy dependence.
- ♦ The contribution from nuclear LG transition at low temperature may be important with lower collision energies
- ♦ The magnetic field will deform the phase structure and the corresponding particle fluctuation distributions in the non-central collision
- More investigations are needed to connect theory with future HIC experiments

Thank you!