Λ —polarization in heavy-ion collisions at 7.7-200 GeV

Baochi Fu

With Huichao Song and Xu-Guang Huang

Peking University

第十七届全国核物理大会,武汉

Introduction

Polarization:

STAR Collaboration, Nature 548, 62 (2017)

Niida, Quark Matter 2018

- Global polarization: Spin-orbital correlation
- Local polarization: Structure in momentum space
- Measurements: parity-violating decay of hyperons

$$\Lambda \to p + \pi^-$$

$$\frac{dN}{d\Omega^*} = \frac{1}{4\pi} (1 + \alpha_{\rm H} \mathbf{P}_{\rm H} \cdot \mathbf{p}_{\mathbf{p}}^*)$$

P_H: Λ polarization p_p^{*}: proton momentum in Λ rest frame α_{H} : Λ decay parameter $(\alpha_{\Lambda} = -\alpha_{\Lambda} = 0.642 \pm 0.013)$

Global Polarization:

STAR Collaboration, Nature 548, 62 (2017)

Local Polarization:

• No significant dependence on p_T/η

Local Polarization:

• Significant ϕ -dependence of the polarization along y/z direction

Polarization (The theory side):

• Early works:

Polarization from global orbital angular momentum by spin-orbital correlation

Z. T. Liang, X. N. Wang, Phys.Rev.Lett. 94 (2005) 102301

Polarized secondary particles in un-polarized hadron-hadron collisions

Voloshin nucl-th/0410089

• Spin-vorticity coupling

local thermodynamic equilibrium for spin degree of freedom

- Statistical-hydro model F. Becattini, et al. Annals Phys. 338 32 (2013).
- Kinetic model with Wigner functions R. Fang, et al. Phys. Rev. C94 (2016) 024904

$$S^{\mu}(x,p) = -\frac{1}{8m} (1 - f(x,p)) \epsilon^{\mu\nu\rho\sigma} p_{\sigma} \varpi_{\nu\rho}$$

$$P^{\mu} = \frac{1}{S} S^{\mu}$$
Thermal vorticity: $\varpi_{\mu\nu} = -\frac{1}{2} (\partial_{\mu}\beta_{\nu} - \partial_{\nu}\beta_{\mu})$

$$\beta_{\mu} = u_{\mu}/T$$
7

Some results from spin-vorticity coupling model

Global trend could be reproduced by hydro and non-hydro models

Some results from spin-vorticity coupling model

Polarization from the Hybrid model

B. Fu, K. Xu, H. Song and X. Huang, in preparation

The hybrid model: → MUSIC → iSS → UrQMD AMPT Providing $T^{\mu\nu}$ and N^{μ} as the hydro initial condition at AMPT: hypersurface $\tau = \tau_0$

- 3+1-d viscous hydrodynamics MUSIC:
 - iSS: Monte-Carlo particle generator on the freeze-out surface
- UrQMD: Hadron cascade model

AMPT: Z. Lin, C. Ko, B. Li, B. Zhang and S. Pal, Phys.Rev. C72 (2005) 064901 iSS: ©Zhi Qiu and Chun Shen MUSIC: B. Schenke, S. Jeon and C. Gale, Phys.Rev. C82 (2010) 014903 UrQMD: M. Bleicher, et al. arXiv:hep-ph/9909407

Bulk hadronic observables:

12

From vorticity to polarization:

Polarization in the model: integration on the freeze-out surface

Λ – polarization results

Global Polarization results:

$$P_H = \int p_T dp_T dy d\phi_p \ P_y^*(p_T, \phi_p, y)$$

P^{*}: boost to the particle's rest frame

 η – dependence

 $p_T - dependence$

- At 200 GeV, no significant dependence in the longitudinal and transverse distribution
- At low energies, Hybrid model predicts a similar trend

Reaction plane distribution of P^{y}

• Circular polarization at finite rapidity region Phys.Rev. C98 (2018) 024905 Same as XiaoLiang's result $\omega_{\perp} (\eta_s = 1)$

 ϕ – dependence

1.2 ·

Polarization [%]

0.0

0

Transverse P_Z

Similar structure but still with opposite sign ۲

Comparison with other models

Global Polarization results:

 Like other models, the decreasing trend can be expressed by the our hybrid model, but the magnitude difference exist between different models

Differences between models:

Hybrid model vs. full-AMPT

- Particle emission time is earlier in AMPT
- Averaged velocity difference

Differences between models: Hybrid model vs. vhlle (I. K.)

Total/averaged angular momentum

- Different (averaged) angular momentum
- We need to check the details further whether the difference comes from the initial condition models UrQMD/AMPT

Differences between models:

- Spectator particles: (x = y = z = t = 0, UrQMD), (px = py = 0, finite x, y, AMPT)1.
- 2. Total angular momentum in the interaction region different

Au-Au, 19.6 GeV, b=8.0 fm

Initial total angular momentum determine the global polarization

Additional comments

The sign puzzle means

$$P^{\mu}(p) = \frac{1}{N} \int p \cdot d\Sigma \ f(x,p) P^{\mu}(x,p) = \frac{1}{4m} \cdot \frac{\int p \cdot d\Sigma \ \frac{1}{2} \epsilon^{\mu\nu\rho\sigma} \bar{\omega}_{\sigma\rho} p_{\nu} \ n_F(1-n_F)}{\int p \cdot d\Sigma \ n_F}$$

Disagreement with the local equilibrium ansatz (Spin formula not adequate):

- Resonance decay?
- Dissipative or second order correction?
- Kinetic spin theory?
- Need of a spin tensor?

Disagreement with the hydrodynamic description (vorticity terms not adequate):

- Hydro model is good enough in the late stage?
- The initial condition correct?

Reaction plane distribution of P^{y}

Reaction plane distribution <a>Corresponding vorticity distribution

Reaction plane distribution of P^{y}

Summary

- Currently, the hybrid model could reproduce lots of soft observables at 7.7-200 GeV
- Based on the hybrid model, the global polarization trend correspond to the experimental data and other model results
- The local polarization might influenced by the less important terms which is determined by the initial models quantitatively.

Backups

 p_T – dependence

Transverse distribution of the polarization P_{v}

AMPT results: Wei, Deng and Huang, Phys.Rev. C99 (2019) no.1, 014905 Vhlle results: Iurii Karpenko

- At 200 GeV, initial vorticity distribution might makes the difference
- As for the hybrid-AMPT, high energy evolution may dilute the vorticity structure

Longitudinal and azimuthal distribution

- For the longitudinal distribution, hybrid model fits well. And again, AMPT results hold larger magnitude and with a plateau in mid-rapidity.
- For the azimuthal distribution, though weakly correlated, hybrid model shows contrary trend with experiments.

AMPT results: Wei, Deng and Huang, Phys.Rev. C99 (2019) no.1, 014905

Transverse structure: $P^z - puzzle$

Hybrid Model

Parameter set:

Model set up

Observables at $\sqrt{s_{NN}}=7.7-62.4~GeV$

 $\Lambda-polarization$

Global polarization

Local polarization

A	мрт 📫	Hydrodynar	mics 📫	iss 📫	UrQMD
Parameter in hybrid model at 19.6 GeV 0-5%					
String parm.	a (AMPT)	0.55	Scale factor	S	2.16
String parm.	b (AMPT)	0.15	Shear viscosity	η/s	0.12
Gaussian parm.	σ_η	0.2	Bulk viscosity	ζ/s	$\zeta/s(T)$
Gaussian parm.	σ _r	0.4 fm	Un-equilibrium f	δf_{shear}	Y
Initial EOS	iEOS	S95p-PCE	Un-equilibrium f	δf_{bulk}	Ν
Initial time	$ au_0$	1.2 fm/c	Freeze-out energy	E_f	0.65 GeV/fm3
Initial nB	nB	from AMPT	Transform Eq.		L. P.

Differences between models:

- 1. Energy of participant part(QGP) different in AMPT and UrQMD
- 2. Spectator particles: (x = y = z = t = 0, UrQMD), (px = py = 0, finite x, y, AMPT)
- 3. Total angular momentum in the interaction region different

Reaction plane distribution of P^{y}

0

 η_s

Initial vorticity structure also affects the expansion so does the local polarization

-1.500

E - 2.000

- 1.500