

Y measurements in Au+Au collisions at $\sqrt{s_{NN}} = 200$ GeV with the STAR experiment

Pengfei Wang(for the STAR Collaboration)

University of Science and Technology of China

Brookhaven National Laboratory

Outline

- Motivation
- STAR experiment
- Y measurements in Au+Au collisions at STAR:
 - $\circ \Upsilon(1S)$ suppression (R_{AA} vs. centrality, p_T)
 - $\circ \Upsilon(2S+3S)$ suppression (R_{AA} vs. centrality, p_T)
- Comparison with LHC results and theoretical calculations
- Summary

Motivation

• **Color-screening:** quark-antiquark potential is color-screened in the QGP by the surrounding partons ⇒ *dissociation*

"Thermometer": different states dissociate at different temperatures ⇒ *sequential suppression*

Y is a cleaner probe at RHIC:

• <u>Regeneration is negligible</u>

A. Emerick, X. Zhao & R. Rapp: EPJ A48 (2012) 72

• <u>Co-mover absorption is negligible</u>

Lin & Ko: PLB 503 (2001) 104

The Solenoidal Tracker at RHIC

Mid-rapidity coverage : $|\eta| < 1, 0 < \varphi < 2\pi$

+ TPC

- O Tracking, PID
- + TOF
 - Measure time of flight
- ◆ BEMC
 - Trigger and identification of high-p_T electrons
- **♦ MTD** (|**η**| < 0.5, 45% in *φ*)
 - Dimuon trigger and muon identification
 - Less Bremsstrahlung: helps separate $\Upsilon(2S+3S)$ from $\Upsilon(1S)$

Y signals in Au+Au@200 GeV

 $\Upsilon \rightarrow e^+e^-$ (2011)

 $\Upsilon \rightarrow \mu^+ \mu^- (2014 + 2016)$

• STAR detector simulation

Residual background (BBbar+DY) :

• PYTHIA simulation

Dielectron vs. dimuon

- Consistent between the dielectron and dimuon channels
- Both results are combined to achieve better precision

Y suppression at RHIC

p+Au:

Y(1S+2S+3S)

• Indicates CNM effects

Au+Au:

Υ(1S):

• Stronger suppression towards central collisions

 00 Y(2S+3S):

- Stronger suppression in more central collisions
- More suppressed than Y(1S) in 0-10% central collisions ⇒ sequential suppression

Y suppression at RHIC

Y(1S) and Y(2S+3S):

• No significant p_T dependence

Y(1S) suppression: RHIC vs. LHC STAR

Y(1S) suppression is similar at RHIC and the LHC:

CMS, PLB 770 (2017) 357

- Similar CNM effects (~ 20-30%)
- Contribution of highly suppressed excited Y states

Pengfei Wang@CNPC, Wuhan

Y(2S+3S) suppression: RHIC vs. LHCstar

Υ(2S+3S):

• Indication of less suppression at RHIC than at the LHC in peripheral collisions

Y(1S) suppression: data vs. models

Both models show good agreement with data: ^{B. Krouppa, A. Rothkopf, M. Strickland: PRD 97, 01601} X. Du, M. He, and R. Rapp: PRC 96, 054901 (2017)

- Rothkopf: Complex potential (lattice QCD); No CNM or regeneration effects
- Rapp: T-dependent binding energy; Includes CNM and regeneration effects

SAR

Y(2S+3S) suppression: data vs. models

- Rapp model describes data
- Rothkopf model calculation is lower than data in 30-60%

Summary

 Υ suppression in Au+Au collisions:

Υ(1S):

- \star Stronger suppression towards central collisions
- **\star** No obvious p_T dependence
- \star Similar suppression as at LHC
- \star Model predictions are consistent with data

 $\Upsilon(2S+3S)$:

- \star Stronger suppression towards central collisions
- **\star** No obvious p_T dependence
- ★ More suppressed than $\Upsilon(1S)$ in 0-10% ⇒ sequential suppression
- ★ Less suppressed at RHIC than at LHC in peripheral collisions

Backup

Y cross-section in p+p collisions

p+p@200 GeV: $\sigma = 81 \pm 5(stat.) \pm 8(syst.)$ pb

- Baseline for p+A and A+A collisions with improved precision
- Consistent with the Color Evaporation Model (CEM) prediction

Y(1S+2S+3S) R_{pAu} at 200 GeV

• Additional suppression mechanism beyond nPDF effects seems to be needed