

共振核反应γ射线源下的¹⁹⁷Au(γ, n) 反应截面测量

杨婉莎 2019.10.10

北京师范大学&中国原子能科学研究院

口 主要研究内容
¹³ C (p, γ) ¹⁴ N共振核反应γ源的厚靶产额
¹⁹⁷ Au (γ, n) ¹⁹⁶ Au光核反应截面
^{正在进行中的工作} : > ⁷ Li(p,γ) ⁸ Be共振核反应γ源的厚靶产额
¹⁹⁷ Au (γ, n) 光核反应截面
口 总结与展望

口 研究背景

主要研究内容
前期工作结果:
¹³ C (p, γ) ¹⁴ N共振核反应γ源的厚靶产额
¹⁹⁷ Au (γ, n) ¹⁹⁶ Au光核反应截面
正在进行中的工作:
۶ 7Li (p, γ) ⁸ Be共振核反应γ源的厚靶产额
¹⁹⁷ Au (γ, n) 光核反应截面

光核反应-背景

	Typical nuc	lear waste from the	nuclear reactor	$(1 \mathrm{Gwe})$
Nuclei	Half Decay (year)	Neutron Cross Section (b)	Production (Ci/year)	Amount (kg/year)
FP				
85Kr	11	1.7	3.0×10^5	0.79
90Sr	29	0.014	25×10^6	17.8
93Zr	$1.5 imes 10^6$	2.6	61	24.0
99Tc	2.1×10^5	20	433	25.5
107Pd	$6.5 imes 10^6$	1.8	3.6	7.0
129I	1.6×10^7	27	1.0	5.8
$135 \mathrm{Cs}$	2.3×10^6	8.7	13.5	11.7
137Cs	30	0.25	3.5×10^{6}	39.5
151Sm	90	15,000	1.1×10^4	0.4
TRU				
237Np	$2.1 imes 10^6$	181	11	14.4
241Am	432	603	$5.0 imes 10^3$	1.46
243Am	7380	79	601	3.03
243Cm	28,5	720	55	0.01
244Cm	18	15	5.8×10^4	0.72
245Cm	8500	2,347	4.1×10^{3}	0.03

chen J, Imasaki K, Fujita M, Yamanaka C, Asakawa M, Nakai S, Asakuma T. Development of a Compact High Brightness X-ray Source[J]. Nuclear Instruments & Methods in Physics Research, 1994, 341(1-3):346–350

> 某些核的中子嬗变截面较小

> 稳定核可能会嬗变为长放核

 $^{135}Cs \rightarrow ^{134}Cs$ 或 ^{133}Cs $^{133}Cs \rightarrow ^{132}Cs(6.5d)$ 或 $^{131}Cs(9.7d)$

and Co., Berlin, 1987.

E_γ(MeV)

背景-伽玛射线源

1、轫致辐射γ源:

光子能量可以覆盖整个巨共振区,但它最大的缺点, 就是<mark>能谱连续;</mark>

2、中子捕获γ源:

能量宽度主要受多普勒效应限制,种γ光子的能量 一般不到10 MeV,只能测量一些在巨共振阈值附近的光 核反应;

- 3、飞行中的正电子湮灭γ 源
- 4、激光康普顿背散射(LCS)γ源:

光子束亮度高、极化度高、单能性好、发散度小并且 能量可调,但是由于方向性好,在大量处理核废料时需 要扫描;

5、质子共振核反应γ 源:

入射质子只需很小的质心系能量撞击靶核就能达到复 合核的高能量激发态,复合核退激放出能量很高的单能γ 光子,而且在4π方向上放射γ光子,有利于处理大面积 的核废料。

Henry R. Research opportunities at the upgraded HI $\gamma\,S$ facility,Progress in Particle and Nuclear Physics,Volume 62, Issue 1,2009,Pages 257-303,

伽玛射线能量为:

入射质子能量+B核最后一个质子结合能

Reactions	Resonance energy /keV	γ-ray energy /MeV	Thick target yield /proton	Width I/keV
⁷ Li(p, γ)	441.4 ± 0.5	14.8.(33%) 17.6(67%)	1.9×10^{-8}	12
9p ()	998.0 ± 4	7.4	1.78×10^{-8}	94
$Be(p, \gamma)$	1087.0 ± 2	6.7, 0.72	1.01×10^{-9}	4
	340.0 ± 2	6.1(96%) 7.0(4%)	1.74×10^{-8}	3.2
19 57	873.5 ± 1	6.1(72%) 7.0(28%)	3.6×10^{-7}	5.2
$F(p, \alpha \gamma)$	935.3 ± 1	6.1(77%) 7.0(23%)	2.0×10^{-7}	8.0
	$All \le 960$	6.1(72%) 7.0(28%)	6.9×10^{-7}	-
$^{13}C(p,\gamma)$	1747	9.17	7.4×10^{-9}	

Ref:Fowler W A, Lauritsen C C, Lauritsen T. Gamma-Radiation from Excited States of Light Nuclei[J]. Reviews of Modern Physics, 1948, 20(1):236-277.

背景-质子共振γ源

(y, 2np)

19.8

¹⁹⁷Au(γ, n)¹⁹⁶Au反应阈值: (y, 2n) (y, 2p) (y, 3n) (y, 3p) Reaction (y, np) (y, n) (y, p) Threshold B, MeV 8.1 5.8 14.7 14.0 13.7 23.1 20.6

Reactions	Resonance energy /keV	γ-ray energy /MeV	Thick target yield /proton	Width F /keV
$^{7}Li(p,\gamma)$	441.4 ± 0.5	14.8.(33%) 17.6(67%)	1.9×10^{-8}	12
9 Para	998.0 ± 4	7.4	1.78×10^{-8}	94
$Be(p, \gamma)$	1087.0 ± 2	6.7, 0.72	1.01×10^{-9}	4
	340.0 ± 2	6.1(96%) 7.0(4%)	1.74×10^{-8}	3.2
19 54	873.5 ± 1	6.1(72%) 7.0(28%)	3.6×10^{-7}	5.2
$^{19}F(p,\alpha\gamma)$	935.3 ± 1	6.1(77%) 7.0(23%)	2.0×10^{-7}	8.0
	$All \le 960$	6.1(72%) 7.0(28%)	6.9×10^{-7}	
$^{13}C(p, \gamma)$	1747	9.17	7.4×10^{-9}	-

□ 主要研究内容 前期工作结果: > ¹³C (p, γ) ¹⁴N共振核反应 γ 源的厚靶产额 ▷ 197Au (y, n) 196Au 光核反应截面 正在进行中的工作: \succ 7Li (p, y) ⁸Be共振核反应y源的厚靶产额 ▶ 197Au (y, n) 光核反应截面

¹³ $C(\mathbf{p}, \boldsymbol{\gamma}) @E_p = 1.747 MeV$

$$\Gamma_{T} = 122eV$$

$$^{13}C + p \rightarrow {}^{14}N^* - \begin{bmatrix} {}^{13}C + p & \Gamma_{p} = 115.7eV \\ & & \\ {}^{14}N + \gamma & \Gamma_{\gamma} = 6.3eV \end{bmatrix}$$

由布莱特-维格纳(Breit-Wigner)公式:

$$\sigma(E_p) = \frac{\pi \lambda_p^2 g \Gamma_p \Gamma_{\gamma}}{(E_{pc.m.} - E_{Rc.m.})^2 + (\frac{\Gamma_T}{2})^2}$$

可以得到:
$$\sigma_{max} = \sigma(E_p = 1.747 MeV) = \frac{4\pi \lambda_p^2 g \Gamma_p \Gamma_{\gamma}}{(\Gamma_T)^2} \approx 106 mb$$

¹³C(p, γ)在1.75 MeV处的激发曲线

¹³C(p, γ)¹⁴N共振核反应γ源

• 靶厚选择

靶厚: 100ug/cm²

 $Y(E_p, \Delta) = \frac{\Gamma \sigma_R}{2\epsilon} (\arctan(\frac{E_p - E_R}{\Gamma/2}) - \arctan(\frac{E_p - E_R - \Delta}{\Gamma/2}))$

$$Y''(E_p, \Delta) = \int \int \int Y(E_p + \delta, \Delta + \delta') \frac{1}{\sqrt{2\pi}\sigma} e^{-\delta^2/2\sigma^2} \frac{1}{\sqrt{2\pi}\sigma'} e^{-\delta'^2/2\sigma'^2} d\delta d\delta'$$

- ▶同位素¹³C靶: 靶厚100µg/cm²
- ▶探测器: φ55.5mm同轴型高纯锗、3"×3"溴化镧探测器、

5"×5"碘化钠探测器

Detector	L/cm	θ/°
高纯锗	69	28
溴化镧	81	38
碘化钠	43.5	81

北京印紀大學

 $^{13}C(p, \gamma)$ ¹⁴N共振核反应 γ 源

• HPGe探测器能谱图

¹³C(p, γ)¹⁴N共振核反应γ源

F. Scantamburlo, et al. LIPAc, the 125mA / 9MeV / CW Deuteron IFMIF's Prototype Accelerator: What Lessons Have We Learnt from LEDA?[C]//Proc. 5th International Particle Accelerator Conference (IPAC'14), Dresden, Germany, June 15-20, 2014. Geneva, Switzerland:JACoW, 2014:3256–3258

口 研究背景

□ 主要研究内容

前期工作结果: > ¹³C(p, γ)¹⁴N共振核反应 γ 源的厚靶产额

- ▶ 197Au(γ, n) 196Au光核反应截面
- 正在进行中的工作:
- ▷ ⁷Li(p, γ)⁸Be共振核反应γ源的厚靶产额
- ▶ 197Au (y, n) 光核反应截面

¹⁹⁷Au(γ, n) 光核反应

测量方法:

- 直接测量反应产物,如(y,n)的中子:统计误差
 - 优点是测量效率高,适合于测量小截面反应
 - 缺点是在线测量时易受束流和其他反应道影响
- 活化法,测量衰变产物:最小可测活度
 - 缺点是测量效率相对较低,要求产物核半衰期适中,束流时间估算相对较难;优点是离线测量干扰小
 - 计量站专用屏蔽系统, HPGe, 最小可测活度1mBq
 - 普通屏蔽系统, HPGe, 10-100mBq

- ≥ ¹⁹⁷Au(γ, n)的产物¹⁹⁶Au会进行轨道电子俘获或β⁺衰变到¹⁹⁶Pt
 - (T_{1/2} = 6.18天)或β-衰变到¹⁹⁶Hg

 $S_n = 8.07 \text{ MeV}$ $S_{2n} = 14.7 \text{ MeV}$

	衰变子核	E_{γ} / keV	发射强度	
目	¹⁹⁶ Pt	333.03	0.229	
	¹⁹⁶ Pt	355.73	0.87	
	¹⁹⁶ Hg	426.10	0.066	

¹⁹⁷Au(Y, n)光核反应

low-background HPGe system

照射时长/s	放置时长/s	测量时长/s	N ₃₅₆
21600	12900	74320	1566
19800	11040	339000	6610

¹⁹⁷Au(Y, n)光核反应

照射时长/s	放置时长/s	测量时长/s	N ₃₅₆
21600	12900	74320	1566
19800	11040	339000	6610

¹⁹⁷Au(Y, n)光核反应

$$N_{s}(\theta) = \begin{cases} \frac{h}{\cos(\theta)} \frac{\rho}{A} N_{A}, & 0 \le \theta < \theta_{0} \\ \frac{r}{\sin(\theta)} \frac{\rho}{A} N_{A}, & \theta_{0} \le \theta \le \pi/2 \end{cases}$$

$$P = 2\pi \int_0^{\pi/2} I(\theta) (1 - e^{-N_s(\theta)\sigma_g}) \sin(\theta) d\theta$$

$$\varepsilon' = \frac{\int_0^h P'(h) e^{-N_v h \sigma'} dh}{P(h)} \varepsilon$$

Sample	N _{Det}	N _{Reaction}	σ_g / mb
1	1566 ± 49	$1.01 \pm 0.03 \times 10^{6}$	40.1 ± 6.9
2	6610 ± 100	$1.09 \pm 0.02 \times 10^{6}$	40.4 ± 6.9

□ 主要研究内容

前期工作结果: > ¹³C(p, γ)¹⁴N共振核反应 γ 源的厚靶产额 ▶ 197Au(γ, n) 196Au光核反应截面 正在进行中的工作: > ¹³C (p, γ) ¹⁴N共振核反应 γ 源的厚靶产额

▷ ¹⁹⁷Au(γ, n) ¹⁹⁶Au光核反应截面

□ 主要研究内容

> ¹³C (p, γ) ¹⁴N共振核反应 γ 源的厚靶产额

▷ 197Au (y, n) 196Au 光核反应截面

□ 总结与展望

小结

- 小结
 - 准确测量了9.17 MeV伽玛射线的厚靶产额,并应用该能量的伽 玛射线对光核反应的标准反应¹⁹⁷Au(γ, *n*)的反应截面进行了测量。
- 现在正在进行的工作

➤研究⁷Li(p, γ)在440 keV处共振反应所产生的γ射线在光核截面 测量中的应用。

前期工作结果:

> ¹³C(p, γ)¹⁴N共振核反应 γ 源的厚靶产额

▷ 197Au (y, n) 196Au 光核反应截面

正在进行中的工作: > ¹³C (p, γ) ¹⁴N共振核反应 γ 源的厚靶产额

▶ 197Au(γ, n) 196Au光核反应截面

Reactions	Resonance energy /keV	γ-ray energy /MeV	Thick target yield /proton	Width Γ/keV
$^{7}Li(p,\gamma)$	441.4 ± 0.5	14.8.(33%) 17.6(67%)	1.9×10^{-8}	12
90 ()	998.0 ± 4	7.4	1.78×10^{-8}	94
$Be(p, \gamma)$	1087.0 ± 2	6.7, 0.72	1.01×10^{-9}	4
1	340.0 ± 2	6.1(96%) 7.0(4%)	1.74×10^{-8}	3.2
19 54	873.5 ± 1	6.1(72%) 7.0(28%)	3.6×10^{-7}	5.2
$F(p,\alpha\gamma)$	935.3 ± 1	6.1(77%) 7.0(23%)	2.0×10^{-7}	8.0
	$All \le 960$	6.1(72%) 7.0(28%)	6.9×10^{-7}	-
$^{13}C(p,\gamma)$	1747	9.17	7.4×10^{-9}	-

两个问题: 1、达到了两个中子阈值,怎
么区分?
(能量和数量上都能区分)
2、14.8MeV和17.6MeV产生
的反应伽马怎么区分?

¹⁹⁷Au (γ, n) @ ⁷Li (p, γ) ⁸Be

2、相对强度法

共振和非共振情况下, 两条γ射线的相对强度比不同!!

TABLE 1

Gamma rays used in experiment

Reaction	Gamma ray energies (MeV)	Target preparation	Target thickness	E_{p} . (keV)	Intensity ratio at 0° (present work)	Nomen- clature	Angular distribution	Approximate relative intensity
${ m Li}^7(p,\gamma){ m Be}^8$	"14.8" 14.35 $+\frac{7}{8}E_{p}$. "17.6" 17.25 $+\frac{7}{8}E_{p}$.	Vacuum evaporation of natural lithium	Thick	450550	$\frac{17.6 : 14.8}{1.94 \pm 0.1}$	Lithium "resonance radiation"	Both isotropic	100
			150—200 keV	800—900	≈ 0.53	Lithium "non- resonance radiation"	Both anisotropic	6
$B^{11}(p, \gamma)C^{12}$	$ \begin{array}{c} ``12.2'' \\ 11.53 + \frac{11}{12} E_p \\ ``16.7'' \\ 15.96 + \frac{11}{12} E_p \\ \end{array} $	Evaporation of slurry of boron in alcohol	l mg/cm²	660	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$		Both anisotropic	5
				900	2.76 ± 0.05		Both anisotropic	8

共振: 17.6MeV: 14.8MeV=**2: 1** 非共振: 14.8MeV: 17.6MeV=**2: 1**

Nuclear Physics 23 (1961) 468--480;

¹⁹⁷Au (γ, n) @ ⁷Li (p, γ) ⁸Be

共振 镀靶 放置时间:3h

¹⁹⁷Au (γ, n) @ ⁷Li (p, γ) ⁸Be

非共振 镀靶 放置时间:3h

- ▶ 开展强流质子加速器方面的研究以获得有竞争力的单能伽玛 射线源。
- ▶ 开发新型伽玛探测器以测量高能量伽玛射线,比如9.17 MeV 伽玛射线可以通过掺杂14N的液体闪烁体探测器进行测量。
- ▶ 建立基于9.17 MeV共振吸收爆炸物检测方法的集装箱、车辆 检测系统,并加入成像系统。
- ▶ 深入研究核反应伽玛源在核共振荧光中的应用。

请各位老师批评指正!

