

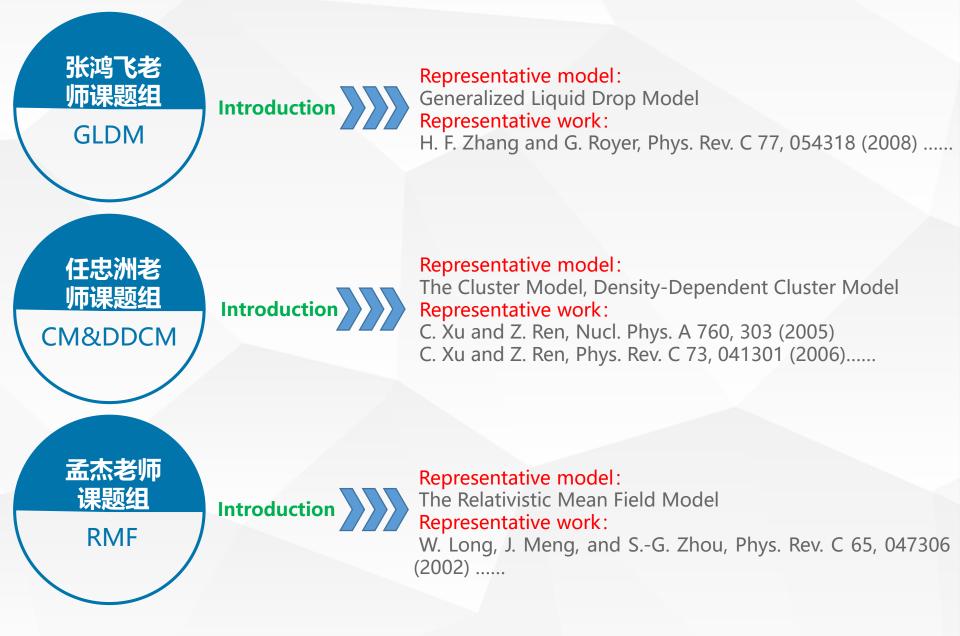
University of South China (南华大学)

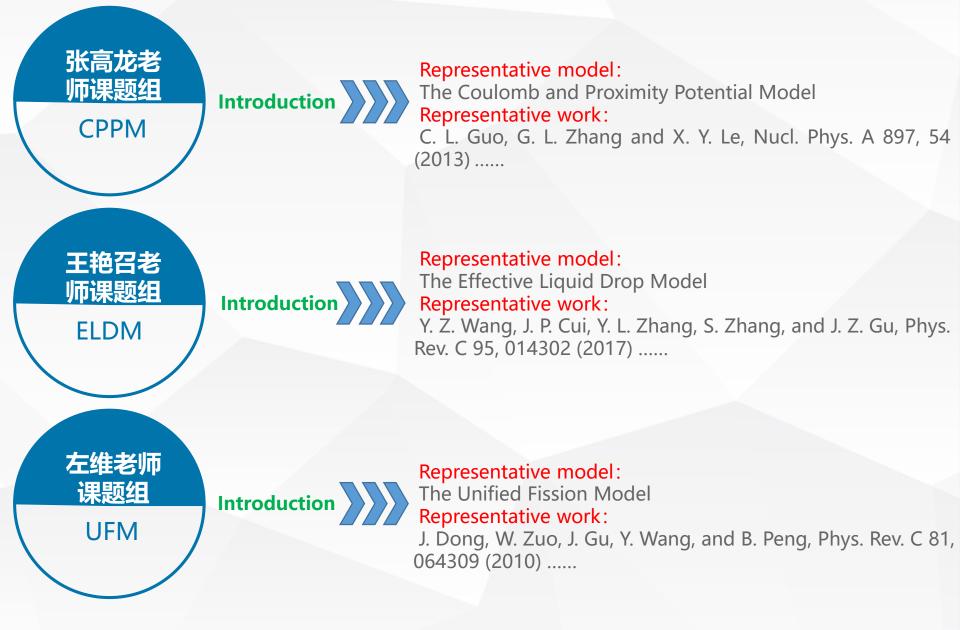
Systematic study of α decay halflives based on Gamow–like model with a screened electrostatic barrier

cjh452002 @163.com

Outline

1.The theoretical models of α decay
2.The Gamow--like model
3.Our works
4.Summary


The theoretical models of α decay


 α decay, as an important tool to investigate superheavy nuclei (SHN), provides abundant information about the nuclear structure and stability of SHN. Within Gamow' s theory, the α decay process is described as a preformed α particle penetrating the Coulomb barrier.

$$T_{1/2} = \frac{\hbar \ln 2}{\Gamma} = \frac{\ln 2}{\lambda}$$

 $\lambda = P_{\alpha}\nu P$

 P_{α} denotes α preformation factors, ν is the assault frequency of α particle, P denote the semiclassical Wentzel-Kramers-Brillouin (WKB) barrier penetrate probability

IOP PUBLISHING

Phys. Scr. T154 (2013) 014029 (5pp)

PHYSICA SCRIPTA

doi:10.1088/0031-8949/2013/T154/014029

Half-lives for α and cluster radioactivity in a simple model

A Zdeb, M Warda and K Pomorski

Katedra Fizyki Teoretycznej, Uniwersytet Marii Curie-Skłodowskiej, Lublin, Poland

E-mail: pomorski@kft.umcs.lublin.pl

PHYSICAL REVIEW C 87, 024308 (2013)

Half-lives for a and cluster radioactivity within a Gamow-like model

A. Zdeb,^{*} M. Warda, and K. Pomorski Katedra Fizyki Teoretycznej, Uniwersytet Marii Curie-Skłodowskiej, Lublin, Poland (Received 20 December 2012; published 8 February 2013)

A simple phenomenological model based on the Gamow theory for the evaluation of half-lives for α and cluster radioactivity is proposed. The model contains only one adjustable parameter: the nuclear radius constant, common for both kind of decays and an additional hindrance factor to the lifetimes which gives the effect of an odd particle. A good agreement with the experimental data for nuclei with $Z \ge 84$ and $N \ge 104$ is achieved.

- Zedb et al. show that using only one adjustable parameter, the radius constant, it is possible to reproduce with a good accuracy all existing data for decays of even-even nuclei.
- Zedb et al. describes the decay of odd systems by introducing hindrance factor *h*.

$$T_{1/2} = \frac{\ln 2}{\lambda} 10^h$$

• References :

[1] Zdeb A, Warda M and Pomorski K, Phys. Rev. C 87, 024308 (2013).

[2] Zdeb A, Warda M and Pomorski K, Phys. Scr. T 154, 014029 (2013).

The theoretical framework of the Gamow-like model :

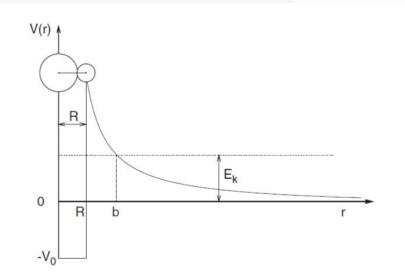
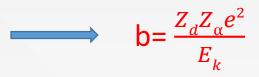


FIG. 1. Schematic plot of the potential energy as a function of the distance between the centers of the decaying nuclei.


The potential energy V(r) is given by:

$$V(r) = \begin{cases} -V_0 & 0 \le r \le R\\ \frac{Z_d Z_\alpha e^2}{r} & r > R \end{cases}$$

The square well radius R:

$$R = r_0 (\mathrm{Ad}^{1/3} + \mathrm{A}_{\alpha}^{1/3})$$

The outer turning point *b* is determined by the condition V(r) = Ek

The theoretical framework of the Gamow-like model :

The α decay penetration probability :

$$P = \exp\left[-\frac{2}{\hbar}\int_{R}^{b}\sqrt{2\mu(V(r) - E_{k})}\,dr\right]$$

$$\implies P = \exp\left\{-\frac{2}{\hbar}\sqrt{2\mu bZ_1Z_2e^2}\left[\arccos\sqrt{\frac{R}{b}} - \sqrt{\frac{R}{b}} - \left(\frac{R}{b}\right)^2\right]\right\}$$

The assault frequency of α decay :

$$\nu = \frac{1}{2R} \sqrt{2Ek/\mu}$$

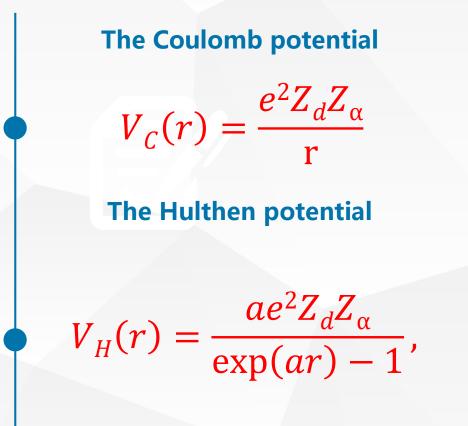
Our works

In the present work we systematically study α decay half-lives of Z > 51 nuclei using the modified Gamow-like model which includes the effects of the centrifugal potential and **electrostatic shielding**.

Available online at www.sciencedirect.com

ScienceDirect

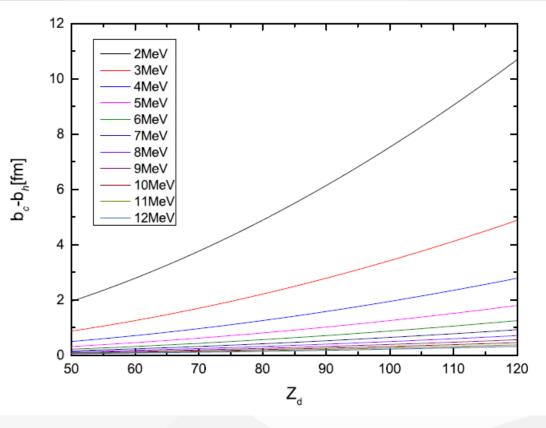
Nuclear Physics A 987 (2019) 350-368



www.elsevier.com/locate/nuclphysa

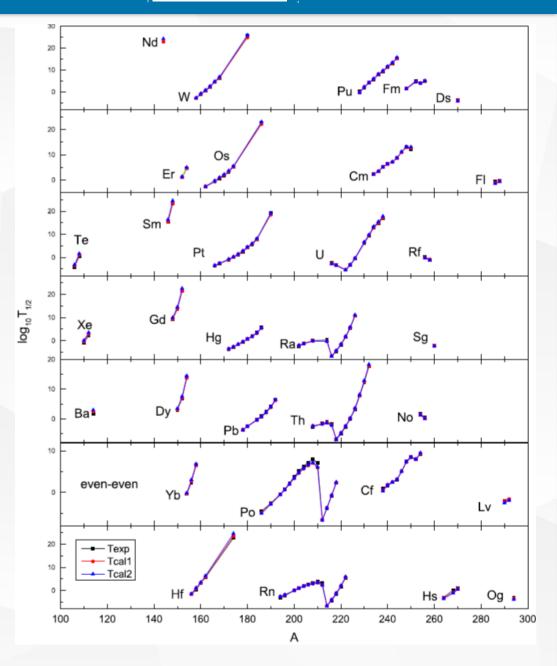
Systematic study of α decay half-lives based on Gamow–like model with a screened electrostatic barrier

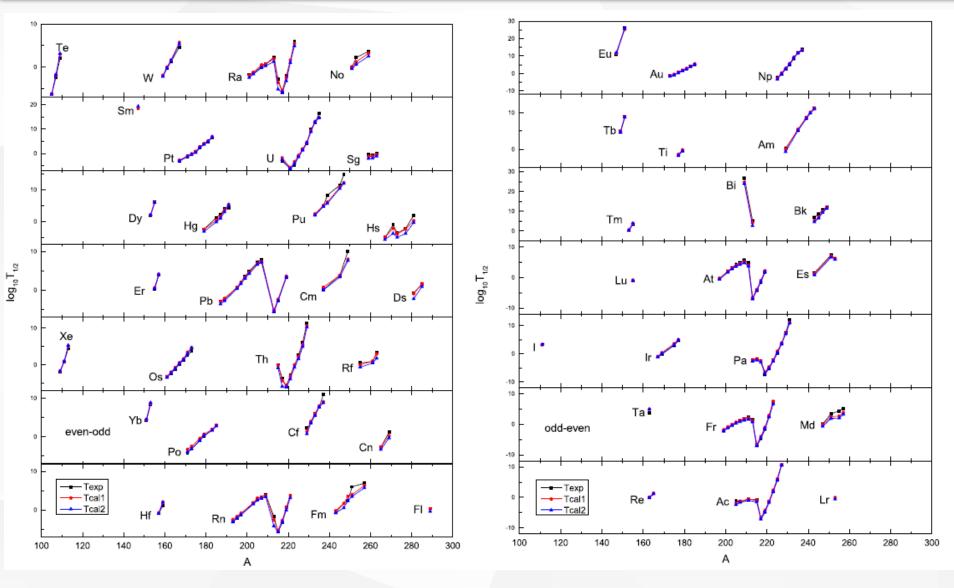
Jun-Hao Cheng^a, Jiu-Long Chen^a, Jun-Gang Deng^a, Xi-Jun Wu^b, Xiao-Hua Li^{a,c,d,*}, Peng-Cheng Chu^e


By considering the effect of non-zero electrostatic screening, we introduce a screened electrostatic barrier *i.e.* the **Hulthen potential** to compare with the Coulomb potential.

 For the superposition of the involved charges, movement of the proton which generates a magnetic field and the inhomogeneous charge distribution of the nucleus, the α-daughter nucleus electrostatic potential (Hulthen potential) behaves as a Coulomb potential at short distance and drop exponentially at large distance.

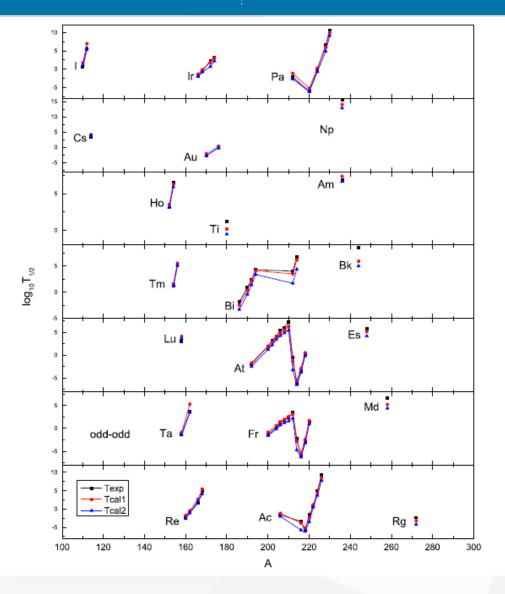
Taylor expansion:


$$\lim_{r \to 0} \frac{ar}{\exp(ar) - 1} = 1 \implies \lim_{r \to 0} \frac{ae^2 Z_d Z_a}{\exp(ar) - 1} = \frac{e^2 Z_d Z_a}{r}$$



• The difference between b_c and b_h obtained by V(r) = E_k .

 From this figure, we can find that the smaller decay energy and larger proton number of the daughter nucleus are, the greater difference in the b value between the pure Coulomb and the Hulthen potential be.


- The calculated results for eveneven nuclei can reproduce the experimental data well.
- Tcal1 and Tcal2 is the logarithmic form of the α decay half-life calculated by our work and Gamow-like model, respectively.

For even-Z, odd-N nuclei

For odd-Z, even-N nuclei

$\pi_z - \pi_n$	n	h	σ_1	σ_2	
e-e	169		0.348	0.487	
0-0	132	0.3455	0.681	0.967	
0-6	94	0.3455	0.598	0.789	
0-0	66	0.691	0.748	1.235	

Comparison with Gamow-like model shows that the results have a certain improvement.

For odd-Z, odd-N nuclei

APPLICA TION

COMPARE

We use our model to predict the α decay half-lives of nuclei **Z=120** i.e. ²⁹⁶120, ²⁹⁸120, ³⁰⁰120, ³⁰²120, ³⁰⁴120, ³⁰⁶120 as well as ³⁰⁸120 and some un-synthesized nuclei on their α decay chains.

Meanwhile Sobiczewski discovered that the calculation taking α decay energy from **WS3+** can best reproduce experimental α decay half-life.

We also systematically calculate the α decay halflives of even-even nuclei of proton numbers Z=120 and nuclei on their α decay chain using Coulomb potential and Proximity potential model with proximity potential Bass73 formalism (**CPPM-Bass73**), the Viola-Seaborg-Sobiczewski (**VSS**) empirical formula, the Universal (**UNIV**) curve , **Royer formula**, the Universal decay law (**UDL**) and the Ni-Ren-Dong-Xu (**NRDX**) empirical formula, respectively.

The different cases of α decay half-lives calculated by different theories.

 Δ between α decay half-lives of calculations and experimental data of different theories.

A of nucleus	$\Delta_{CPPM-bass73}$	Δ_{VSS}	Δ_{UNIV}	Δ_{Royer}	Δ_{UDL}	Δ_{NRDX}	$\Delta_{This-work}$
298	0.817	0.299	0.656	0.443	0.360	0.276	0.482
300	0.419	0.286	0.299	0.091	0.212	0.342	0.142

Conclusions:

- We modify the Gamow-like model by considering the effects of screened electrostatic for Coulomb potential and the centrifugal potential and use this model systematically to study α decay halflives for Z>51 nuclei.
- II. We extend this model to the superheavy nuclei, and predict the half-lives of seven even-even nuclei with a proton number Z=120 and some un-synthesized nuclei on their α decay chains.

THANKS