

TI同位素链中候选手征核的理论探索

汇报人: 陆晓

导师: 亓斌

目录

1 引言

- 2 190核区TI同位素链中的候选手征核
 - 理论框架与数值细节
 - 奇奇核192-202TI中的候选手征核
 - 奇A核¹⁹³⁻¹⁹⁹TI中的候选手征核
- 3 与实验观测比较
 - 粒子转子模型理论框架与数值细节
 - 粒子转子模型计算198TI中的手征双重带
 - 粒子转子模型计算195TI中的三准粒子手征带

4 总结与展望

目录

1 引言

- 2 190核区TI同位素链中的候选手征核
 - 理论框架与数值细节
 - 奇奇核192-202TI中的候选手征核
 - 奇A核¹⁹³⁻¹⁹⁹TI中的候选手征核
- 3 与实验观测比较
 - 粒子转子模型理论框架与数值细节
 - 粒子转子模型计算198TI中的手征双重带
 - 粒子转子模型计算195TI中的三准粒子手征带

4 总结与展望

手征对称性

- 一个物体不能通过转动或平移操作与
 它的镜像重合,我们就称其具有手征
 性或手性;
- 手性广泛存在于自然界中。

手性原子核的理论预言和实验证实

• 1997年理论预言存在手性原子核 Frauendorf & Meng, Nucl. Phys. A 617, 131 (1997)

• 2001年实验报道候选手性原子核 Starosta et al., Phys. Rev. Lett. 86, 971 (2001)

VOLUME 86, NUMBER 6 PHYSICAL REVIEW LETTERS 5 FEBRUARY 2001

Chiral Doublet Structures in Odd-Odd N = 75 Isotones: Chiral Vibrations

K. Starosta.^{1,4} T. Koike,¹ C. J. Chiara,¹ D. B. Fossan,¹ D. R. LaFosse,¹ A. A. Hecht,² C. W. Beausang,² M. A. Caprio.² J. R. Cooper,² R. Kritcken,² J. R. Novak,² N. V. Zamfir,^{2,4} K. E. Zyromski,² D. J. Harley,³ D. L. Balabanski,^{3,4} Jing ye Zhang,⁹ S. Frauendorf⁴ and V. I. Dimitrov^{4,4}

¹Department of Physics and Astronomy, SUNY at Stony Brook, Stony Brook, New York 11794 "Wright Naclear Structure Laboratory: Vale University, New Haven, Connecticut 06520 "Department of Physics and Astronomy, University of Temessee Knoxville, Temessee 37996 "Department of Physics, University of Notre Dame, Notre Dame, Indiana 46556 and Institute for Nuclear and Hadronie Physics, Research Conter Assearch, Olis14 Presiden, Germany

在130核区N=75同中子素发现基于 $\pi h_{11/2} \otimes \nu h_{11/2}^{-1}$ 组态的手征双重带

实验上已经发现的手性原子核

Ζ

手征形成的条件

理论计算什么情况下可能存在手征带?

- 高j的粒子空穴组态
- 原子核有三轴形变

Frauendorf & Meng, Nucl. Phys. A 617, 131 (1997)

目录

1 引言

- 2 190核区TI同位素链中的候选手征核
 - 理论框架与数值细节
 - 奇奇核¹⁹²⁻²⁰²Ⅰ中的候选手征核
 - 奇A核¹⁹³⁻¹⁹⁹TI中的候选手征核
- 3 与实验观测比较
 - 粒子转子模型理论框架与数值细节
 - 粒子转子模型计算198TI中的手征双重带
 - 粒子转子模型计算195TI中的三准粒子手征带

4 总结与展望

理论

相对论平均场理论(RMF)

基本出发点是利用介子交换的方式提供核力或者通过点耦合的方式构造协变密度泛函。

相关工作参考:

J. Meng, Relativistic Density Functional for Nuclear Structure (World Scientific, Singapore) (2015).

J. Meng, H. Toki, S.G. Zhou, S.Q. Zhang, W.H. Long and L.S. Geng, Prog. Particle Nucl. Phys. 57, 470 (2006).

P. W. Zhao, Z. P. Li, J. M. Yao, and J. Meng, Phys. Rev. C 82, 054319 (2010)

相关的理论工作

¹⁰⁶Rh: J. Meng et al., *Phys. Rev. C* 73, 037303 (2006).
 Rhodium isotopes: J. Peng et al., *Phys. Rev. C* 77, 024309 (2008)
 ¹⁰⁶Rh : J. M. Yao et al., *Phys. Rev. C* 79, 067302 (2009)
 ¹⁰⁵Rh : Jian Li et al., *Phys. Rev. C* 83, 037301 (2011)
 ¹⁰⁷Ag: B. Qi, et al., *Phys. Rev. C* 88, 027302 (2013)
 ¹⁰³Rh: I. Kuti et al., *Phys. Rev. Lett.* 113, 032501 (2014).
 Rubidium isotopes: B. Qi et al., *Phys. Rev. C* 98, 014305 (2018).

Bromine isotopes: B. Qi et al., Science China 62(1), 12012 (2019).

PHYSICAL REVIEW C 97, 034306 (2018)

Possible candidates for multiple chiral doublet bands in cesium isotopes

Jian Li (李剑)^{*} College of Physics, Jilin University, Changchun 130012, China

(Received 24 October 2017; revised manuscript received 7 January 2018; published 5 March 2018)

Following the reports of candidate chiral doublet bands observed in odd-A cesium isotopes, the triaxial deformations with corresponding configuration and the possible multiple chiral doublet $(M\chi D)$ phenomenon

PHYSICAL REVIEW C 98, 024320 (2018)

Exploring nuclear multiple chirality in the $A \approx 60$ mass region within covariant density functional theory

J. Peng^{1,*} and Q. B. Chen²
¹Department of Physics, Beijing Normal University, Beijing 100875, China
²Physik-Department, Technische Universität München, D-85747 Garching, Germany

130核区: 预言^{125,129,131}Cs中可能 存在多手征带

60核区: 预言^{54,56-60}Co中可能 存在手征带,其 中^{54,57,60}Co可能存在多 手征带

11 / 42

2019年10月11日

- 费米子壳选为12
- 玻色子壳选为20
- •选用PK1参数组

数值细节

固定玻色子壳为20,改变费米子壳检验收敛性

Figure: 左、中间、右图分别对应¹⁹²TI基态能量、四极形变β以及偏离轴 对称形变γ随费米子壳的变化图。

将费米子壳从12改变到14,基态能量变化小于0.05%,因此费米 子壳选为12就足以进行较好的理论描述。

数值细节

固定费米子壳为12,改变玻色子壳检验收敛性

Figure: 左、中间、右图分别对应¹⁹²TI基态能量、四极形变β以及偏离轴 对称形变γ随玻色子壳的变化图。

玻色子壳选为20。

数值细节

RMF(PK1^[1]、NL3^[2]、PC-PK1^[3]参数组)计算¹⁹²TI

Figure: 左图为¹⁹²TI中能量E随四极形变 β 的变化图, 右图为形变参数 γ 随 β 的变化图。

[1]. W. H. Long, J. Meng, N. Van Giai, and S. G. Zhou, Phys. Rev. C 69, 034319 (2004).

[2]. G. A. Lalazissis, J. König, and P. Ring, Phys. Rev. C 55, 540 (1997).

[3]. P. W. Zhao, Z. P. Li, J. M. Yao, and J. Meng, Phys. Rev. C 82, 054319 (2010).

数值细节

不同参数组对三轴极小点的影响

Table: 相对论平均场PK1(黑色)、NL3(蓝色)、PC-PK1(红色)参数组计算¹⁹²TI的结果.

States	Configuration	unpair configuration	$E_{tot.}$ (MeV)	$(eta,\gamma$)	E_{cal}
А	$\pi(s_{1/2}^{-2}h_{9/2}^1)\otimes u[(fp)^3i_{13/2}^{-6}]$	$\pi h^1_{9/2} \otimes u(\mathit{fp})^1$	-1506.26	(0.15, <mark>5</mark> 9.82°)	0
А	$\pi(s_{1/2}^{-2}h_{9/2}^1)\otimes u[(fp)^3i_{13/2}^{-6}]$	$\pi h^1_{9/2} \otimes u(\mathit{fp})^1$	-1505.99	$(0.16, 59.75^{\circ})$	0
А	$\pi(s_{1/2}^{-2}h_{9/2}^1)\otimes u[(fp)^3i_{13/2}^{-6}]$	$\pi h^1_{9/2} \otimes u(\mathit{fp})^1$	-1508.10	$(0.16, 59.99^{\circ})$	0
D	$\pi(d_{3/2}^{-2}s_{1/2}^{-2}h_{9/2}^3)\otimes\nu[(fp)^2i_{13/2}^{-5}]$	$\pi h_{9/2}^1 \otimes \nu i_{13/2}^{-1}$	-1505.92	(0.21,39.84°)	0.34
D	$\pi(d_{3/2}^{-2}s_{1/2}^{-2}h_{9/2}^3)\otimes \nu[(fp)^2i_{13/2}^{-5}]$	$\pi h_{9/2}^1 \otimes \nu i_{13/2}^{-1}$	-1504.70	(0.22,39.88°)	1.29
D	$\pi(d_{3/2}^{-2}s_{1/2}^{-2}h_{9/2}^3)\otimes \nu[(fp)^2i_{13/2}^{-5}]$	$\pi h_{9/2}^1 \otimes \nu i_{13/2}^{-1}$	-1506.01	(0.22,40.35°)	2.08
F	$\pi(s_{1/2}^{-1})\otimes u[(fp)^2i_{13/2}^{-5}]$	$\pi s_{1/2}^{-1} \otimes \nu i_{13/2}^{-1}$	-1503.99	(0.09,59.93°)	2.27
F	$\pi(s_{1/2}^{-1})\otimes u[(\textit{fp})^2i_{13/2}^{-5}]$	$\pi s_{1/2}^{-1} \otimes \nu i_{13/2}^{-1}$	-1503.59	(0.10,59.83°)	2.40
F	$\pi(s_{1/2}^{-1})\otimes u[(fp)^2i_{13/2}^{-5}]$	$\pi s_{1/2}^{-1} \otimes \nu i_{13/2}^{-1}$	-1505.49	(0.10,60.00°)	2.64

奇奇核¹⁹²TI的理论计算结果

•相对论平均场计算,采用PK1参数。

圖圖o表示自然收敛得到的点,实线—表示固定组态计算得到的点,红色星花*表示势能极小值点,蓝色表示可能存在手征组态。

¹⁹²TI组态信息

Table1: 通过组态固定约束的三轴相对论平均场计算得到的¹⁹²TI的总能量*E*tot, 三轴形 变(β,γ), 以及A-L态极小值对应的价核子组态。其中价质子组态参照80壳, 价中子组 态参照114壳(126壳除去f₅/2, *p*_{3/2}, *p*_{1/2}轨道)。合适的手征组态通过蓝色标出。

	Configuration		Etot	(β,γ)	$E_x(cal.)$
States	Valence nucleons	Unpaired nucleons	(MeV)		(MeV)
A	$\pi(s_{1/2}^{-2}h_{9/2}^1)\otimes u[(fp)^3i_{13/2}^{-6}]$	$\pi h_{9/2}^1 \otimes \nu p_{3/2}^{-1}$	-1506.26	(0.15,59.82°)	0
В	$\pi(d_{3/2}^{-1}s_{1/2}^{-2}h_{9/2}^2)\otimes u[(fp)^2i_{13/2}^{-5}]$	$\pi d_{3/2}^{-1} \otimes \nu i_{13/2}^{-1}$	-1506.23	(0.19,44. <mark>15°</mark>)	0.03
С	$\pi(s_{1/2}^{-2}h_{9/2}^1)\otimes u[(fp)^2i_{13/2}^{-5}]$	$\pi h_{9/2}^1 \otimes \nu i_{13/2}^{-1}$	-1506.00	(0.15,59. <mark>94</mark> °)	0.26
D*	$\pi(d_{3/2}^{-2}s_{1/2}^{-2}h_{9/2}^3)\otimes u[(fp)^2i_{13/2}^{-5}]$	$\pi h_{9/2}^1 \otimes \nu i_{13/2}^{-1}$	-1505.92	(0.21,39.84°)	0.34
Е	$\pi(d_{3/2}^{-2}s_{1/2}^{-2}h_{11/2}^{-2}h_{9/2}^{5})\otimes u[f_{7/2}^{-2}(fp)^{3}i_{13/2}^{-4}]$	$\pi h_{9/2}^1 \otimes \nu f_{5/2}^{-1}$	-1505.32	$(0.25, 16.72^{\circ})$	0.94
F	$\pi(d_{3/2}^{-2}s_{1/2}^{-2}h_{11/2}^{-2}h_{9/2}^{5})\otimes \nu[h_{9/2}^{-2}f_{7/2}^{-2}(fp)^4i_{13/2}^{-4}i_{11/2}^1]$	$\pi h_{9/2}^1 \otimes \nu i_{11/2}^1$	-1504.42	(0.30,11.35°)	1.84
G	$\pi(s_{1/2}^{-1})\otimes u[(fp)^2i_{13/2}^{-5}]$	$\pi s_{1/2}^{-1} \otimes \nu i_{13/2}^{-1}$	-1503.99	(0.09,59.93°)	2.27
Н	$\pi(s_{1/2}^{-1}) \otimes \nu[(fp)^1 i_{13/2}^{-4}]$	$\pi s_{1/2}^{-1} \otimes \nu f_{5/2}^{-1}$	-1503.50	(0.08,59.94°)	2.76
1	$\pi(d_{3/2}^{-2}s_{1/2}^{-2}h_{11/2}^{-2}h_{9/2}^{5}) \otimes \nu[h_{9/2}^{-2}f_{7/2}^{-2}(fp)^{3}i_{13/2}^{-4}i_{11/2}^{2}]$	$\pi h_{9/2}^1 \otimes \nu f_{5/2}^{-1}$	-1503.42	(0.32,12.04°)	2.84
J	$\pi(d_{3/2}^{-2}s_{1/2}^{-2}h_{11/2}^{-2}h_{9/2}^{5}) \otimes \nu[h_{9/2}^{-2}f_{7/2}^{-2}(fp)^{2}i_{13/2}^{-4}i_{11/2}^{3}]$	$\pi h_{9/2}^1 \otimes \nu i_{11/2}^1$	-1502.33	(0.37,10.73°)	3.93
Κ	$\pi(d_{3/2}^{-2}s_{1/2}^{-2}h_{11/2}^{-4}h_{9/2}^{5}i_{13/2}^{2})\otimes u(f_{7/2}^{-3}i_{13/2}^{-4}i_{11/2}^{2}g_{7/2}^{2})$	$\pi h_{9/2}^1 \otimes \nu f_{7/2}^{-1}$	-1501.17	(0.41,6.73°)	5.09
L	$\pi(d_{5/2}^{-2}d_{3/2}^{-4}s_{1/2}^{-2}i_{13/2}^{4}h_{9/2}^{4}h_{11/2}^{-1})\otimes\nu(f_{7/2}^{-4}i_{13/2}^{-5}i_{11/2}^{2}g_{7/2}^{4})$	$\pi h_{11/2}^{-1} \otimes \nu i_{13/2}^{-1}$	-1499.64	(0.48,2.84°)	6.62
M*	$\pi(s_{1/2}^{-2}h_{9/2}^1)\otimes u[f_{7/2}^{-2}(fp)^2i_{13/2}^{-3}]$	$\pi h_{9/2}^1 \otimes \nu i_{13/2}^{-1}$	-1505.06	(0.16,26.17°)	1.20

192,194,196TI的理论计算结果

19 / 42

^{198,200,202}TI的理论计算结果

198,200,202TI手征组态信息

Table3: 相对论平均场计算所得奇奇核¹⁹²⁻²⁰⁰TI中的手征组态,形变 值(β , γ),以及相对激发能 $E_x(cal.)$.

		Configuration		E _{tot}	(β, γ)	$E_x(cal.)$
Nuclei	States	Valence nucleons	Unpaired nucleons			(MeV)
¹⁹² TI	D*	$\pi(d_{3/2}^{-2}s_{1/2}^{-2}h_{9/2}^3)\otimes \nu[(fp)^2i_{13/2}^{-5}]$	$\pi h_{9/2}^1 \otimes \nu i_{13/2}^{-1}$	-1505.92	(0.21,39.84°)	0.34
	H*	$\pi(s_{1/2}^{-2}h_{9/2}^1)\otimes \nu[f_{7/2}^{-2}(fp)^2i_{13/2}^{-3}]$	$\pi h_{9/2}^1 \otimes \nu i_{13/2}^{-1}$	-1505.06	(0.16,26.17°)	1.20
¹⁹⁴ TI	C*ª	$\pi(s_{1/2}^{-2}h_{9/2}^1)\otimes \nu[(fp)^2i_{13/2}^{-3}]$	$\pi h_{9/2}^1 \otimes \nu i_{13/2}^{-1}$	-1522.77	(0.14,36.81°)	0.42
	H*	$\pi(d_{3/2}^{-2}s_{1/2}^{-2}h_{9/2}^3)\otimes \nu[(fp)^2i_{13/2}^{-3}]$	$\pi h_{9/2}^1 \otimes \nu i_{13/2}^{-1}$	-1521.46	(0.17,18.80°)	1.73
	۱*	$\pi(s_{1/2}^{-2}h_{9/2}^1)\otimes \nu[(fp)^2i_{13/2}^{-3}]$	$\pi h_{9/2}^1 \otimes \nu i_{13/2}^{-3}$	-1521.42	(0.13,45.19°)	1.78
¹⁹⁶ TI	A*	$\pi(s_{1/2}^{-2}h_{9/2}^1)\otimes \nu[(fp)^4i_{13/2}^{-3}]$	$\pi h_{9/2}^1 \otimes \nu i_{13/2}^{-1}$	-1539.43	(0.13,34.88°)	0
	E*	$\pi(d_{3/2}^{-2}s_{1/2}^{-2}h_{9/2}^3)\otimes \nu[(fp)^4i_{13/2}^{-3}]$	$\pi h_{9/2}^1 \otimes \nu i_{13/2}^{-1}$	-1538.12	(0.18,37.26°)	1.31
	H*	$\pi(s_{1/2}^{-2}h_{9/2}^1)\otimes \nu[(fp)^2i_{13/2}^{-1}]$	$\pi h_{9/2}^1 \otimes \nu i_{13/2}^{-1}$	-1,537.67	(0.12,42.75°)	1.77
¹⁹⁸ TI	B* ^b	$\pi(s_{1/2}^{-2}h_{9/2}^1)\otimes \nu[(fp)^4i_{13/2}^{-1}]$	$\pi h_{9/2}^1 \otimes u i_{13/2}^{-1}$	-1557.56	(0.11,39.43°)	0.28
	F*	$\pi(d_{3/2}^{-2}s_{1/2}^{-2}h_{9/2}^3)\otimes\nu[(fp)^4i_{13/2}^{-1}]$	$\pi h_{9/2}^1 \otimes \nu i_{13/2}^{-1}$	-1555.44	(0.16,43.32°)	2.40

a: P. L. Masiteng, E. A. Lawrie, and T. M. Ramashidzha et al. AIP Conference Proceedings, 1377, 392 (2011).
b: E. A. Lawrie, P. A. Vymers, and Ch. Vieu et al. Eur. Phys. J. A , 45, 39 - 50 (2010).

实验与理论计算对比结果

Figure: 192,194,196,198 TI实验指定组态对应的激发能,理论预言的手征组态给在相应的核右边,其中194 TI与198 TI实验已发现存在手征。
 ¹⁹²TI: Kreiner, et al., Phys. Rev. C, 21, 933 (1980).
 ¹⁹⁴TI: Masiteng, et al., AIP Conference Proceedings, 1377, 392 (2011).
 ¹⁹⁶TI: Kreiner, et al., Nucl. Phys. A, 308, 147-160 (1978)
 ²⁰⁰TI: Bhattacharva, et al., Phys. Rev. C, 95, 014301 (2017)
 ²⁰¹TI: Bhattacharva, et al., Phys. Rev. C, 95, 014301 (2017)
 ²⁰¹TI: Bhattacharva, et al., Phys. Rev. C, 95, 014301 (2017)
 ²⁰²TI: Bhattacharva, et al., Phys. Rev. C, 95, 014301 (2017)

193,195,197,199TI的理论计算结果

Figure: 利用绝热与组态固定约束的三轴相对平均场理论计算得 到^{193,195,197,199}TI 的能量随形变的变化。

¹⁹³⁻¹⁹⁹TI手征组态信息

		Configuration		E _{tot}	(β, γ)	$E_x(cal.)$
Nuclei	States	Valence nucleons	Unpaired nucleons			(MeV)
¹⁹³ TI	F*	$\pi(d_{3/2}^{-2}s_{1/2}^{-2}h_{9/2}^3)\otimes u[f_{7/2}^{-2}(fp)^4i_{13/2}^{-3}i_{13/2}^{-1}]$	$\pi h_{9/2}^1 \otimes \nu(i_{13/2}^{-1}i_{13/2}^{-1})$	-1514.27	(0.19,20.64°)	0.53
	G*	$\pi(d_{3/2}^{-2}s_{1/2}^{-2}h_{9/2}^3)\otimes \nu[f_{7/2}^{-2}(fp)^3i_{13/2}^{-3}]$	$\pi h_{9/2}^1 \otimes \nu[(fp)^1 i_{13/2}^{-1}]$	-1514.13	(0.20,36.63°)	0.67
	H*	$\pi(s_{1/2}^{-2}h_{9/2}^1)\otimes u[(fp)^3i_{13/2}^{-5}]$	$\pi h_{9/2}^1 \otimes \nu[(fp)^1 i_{13/2}^{-1}]$	-1513.94	(0.15,40.44°)	0.86
	۱*	$\pi(d_{3/2}^{-2}s_{1/2}^{-2}h_{9/2}^3)\otimes u[(fp)^3i_{13/2}^{-5}]$	$\pi h_{9/2}^1 \otimes \nu[(fp)^1 i_{13/2}^{-1}]$	-1513.36	(0.19,20.83°)	1.44
	J*ª	$\pi(s_{1/2}^{-2}h_{9/2}^1)\otimes u[(fp)^2i_{13/2}^{-3}i_{13/2}^{-1}]$	$\pi h_{9/2}^1 \otimes \nu(i_{13/2}^{-1}i_{13/2}^{-1})$	-1513.13	(0.14,39.64°)	1.67
¹⁹⁵ TI	H*	$\pi(s_{1/2}^{-2}h_{9/2}^1)\otimes u(f_{7/2}^{-1}(fp)^4i_{13/2}^{-3})$	$\pi h_{9/2}^1 \otimes \nu(f_{7/2}^{-1}i_{13/2}^{-1})$	-1531.20	(0.14,25.91°)	0.32
	۱*	$\pi(s_{1/2}^{-2}h_{9/2}^1)\otimes u[(fp)^2i_{13/2}^{-1}i_{13/2}^{-1}]$	$\pi h_{9/2}^1 \otimes \nu(i_{13/2}^{-1}i_{13/2}^{-1})$	-1530.06	(0.12,42.20°)	1.46
	J* ^b	$\pi(d_{3/2}^{-2}s_{1/2}^{-2}h_{9/2}^3)\otimes u[(fp)^4i_{13/2}^{-3}i_{13/2}^{-1}]$	$\pi h_{9/2}^1 \otimes u(i_{13/2}^{-1}i_{13/2}^{-1})$	-1530.31	(0.19,40.30°)	1.21
	K*	$\pi(d_{3/2}^{-2}s_{1/2}^{-2}h_{9/2}^3)\otimes u[(fp)^3i_{13/2}^{-3}]$	$\pi h_{9/2}^1 \otimes \nu[(fp)^1 i_{13/2}^{-1}]$	-1529.56	(0.18,36.86°)	1.96
	M*	$\pi(d_{3/2}^{-2}s_{1/2}^{-2}h_{9/2}^3)\otimes u[(fp)^5i_{13/2}^{-5}]$	$\pi h_{9/2}^1 \otimes \nu[(fp)^1 i_{13/2}^{-1}]$	-1528.81	(0.18,32.87°)	2.71
	N* ^{<i>b</i>}	$\pi(d_{3/2}^{-2}s_{1/2}^{-2}h_{9/2}^{2}i_{13/2}^{1})\otimes\nu(p_{1/2}^{-2}p_{3/2}^{-4}f_{5/2}^{-3}i_{13/2}^{-3})$	$\pi i_{13/2}^1 \otimes \nu f_{5/2}^{-1} i_{13/2}^{-3}$	-1527.98	(0.19,48.69°)	3.54

a: J. Ndayishimyea, E.A. Lawriea, and O. Shirinda et al. Acta Physica Polonica B, 48, 343 (2017).

b: T. Roy, G. Mukherjee, and Md.A. Asgar et al. Physics Letters B , 782, 768 - 772 (2018).

193-199TI手征组态信息

Table3: 相对论平均场计算所得奇A核¹⁹⁷TI中的手征组态,形变值(β , γ), 以及相对激发能 $E_x(cal.)$.

		Configuration		E _{tot}	(β, γ)	$E_x(cal.)$
Nuclei	States	Valence nucleons	Unpaired nucleons			(MeV)
¹⁹⁷ TI	F*	$\pi(s_{1/2}^{-2}h_{9/2}^1)\otimes u[(fp)^5i_{13/2}^{-3}]$	$\pi h_{9/2}^1 \otimes \nu[(fp)^1 i_{13/2}^{-1}]$	-1546.73	(0.13,43.18°)	0.8
	G*	$\pi(s_{1/2}^{-2}h_{9/2}^1)\otimes \nu[(fp)^4i_{13/2}^{-1}i_{13/2}^{-1}]$	$\pi h_{9/2}^1 \otimes \nu(i_{13/2}^{-1}i_{13/2}^{-1})$	-1546.38	(0.12,40.51°)	1.15
	H*	$\pi(s_{1/2}^{-2}h_{9/2}^1)\otimes \nu[(fp)^3i_{13/2}^{-1}]$	$\pi h_{9/2}^1 \otimes \nu[(fp)^1 i_{13/2}^{-1}]$	-1546.17	(0.12,41.97°)	1.36
	۱*	$\pi(d_{3/2}^{-2}s_{1/2}^{-2}h_{9/2}^3)\otimes\nu[(fp)^3i_{13/2}^{-1}]$	$\pi h_{9/2}^1 \otimes \nu[(fp)^1 i_{13/2}^{-1}]$	-1544.54	(0.17,43.72°)	2.99
	J*	$\pi(s_{1/2}^{-2}i_{13/2}^1)\otimes \nu[(fp)^3i_{13/2}^{-1}]$	$\pi i_{13/2}^1 \otimes \nu [(fp)^1 i_{13/2}^{-1}]$	-1542.89	(0.12,43,29°)	4.64

实验与理论计算对比结果

^{193,195,197}TI实验指定组 态对应的激发能,理论 预言的手征组态给在相 应的核右边,其中¹⁹³TI 与¹⁹⁵TI实验已发现存在 手征。

 ¹⁹³TI: J. Ndayishimyea et al., Acta Physica Polonica B, **48**, 343 (2017).
 ¹⁹⁵TI: T. Roy et al., Physics Letters B, **782**, 768 - 772 (2018).
 ¹⁹⁷TI: H. Pai et al., Phys. Rev. C **88**, 064302 (2013).

目录

1 引言

- 2 190核区TI同位素链中的候选手征核
 - 理论框架与数值细节
 - 奇奇核192-202TI中的候选手征核
 - 奇A核193-199TI中的候选手征核
- 3 与实验观测比较
 - 粒子转子模型理论框架与数值细节
 - 粒子转子模型计算198TI中的手征双重带
 - 粒子转子模型计算195TI中的三准粒子手征带

4 总结与展望

理论框架

总的哈密顿量:

$$\hat{\mathcal{H}} = \hat{\mathcal{H}}_{ ext{coll}} + \hat{\mathcal{H}}_{ ext{intr}}$$

集体转子哈密顿量:

$$\hat{\mathcal{H}}_{ ext{coll}} = \sum_{k=1}^3 rac{\hat{R}_k^2}{2\mathcal{J}_k} = \sum_{k=1}^3 rac{\left(\hat{I}_k - \hat{J}_k
ight)^2}{2\mathcal{J}_k}$$

其中,转动惯量: $\mathcal{J}_k = \mathcal{J}_0 \sin^2(\gamma - 2\pi k/3)$

价核子的内禀哈密顿量:

$$\hat{H}_{\text{intr}} = \sum_{\nu} \varepsilon_{\rho,\nu} a^+_{\rho,\nu} a_{\rho,\nu} + \sum_{\nu'} \varepsilon_{n,\nu'} a^+_{n,\nu}, a_{n,\nu'}$$
(3)

B. Qi, et al., Phys. Lett. B 675, 175-180 (2009).

2019年10月11日

(1)

(2)

28 / 42

理论框架

单粒子态: $a_{\nu}^{+}|0\rangle = \sum_{\alpha\Omega} c_{\alpha\Omega}^{(\nu)}|\alpha,\Omega\rangle, \quad a_{\overline{\nu}}^{+}|0\rangle = \sum_{\alpha\Omega} (-1)^{j-\Omega} c_{\alpha\Omega}^{(\nu)}|\alpha,-\Omega\rangle$ (4) 价核子内禀波函数:

$$|\varphi\rangle = \left(\prod_{i=1}^{z_1} a_{\rho, v_i}^{\dagger}\right) \left(\prod_{i=1}^{z_2} a_{\rho, \overline{\mu_i}}^{\dagger}\right) \left(\prod_{i=1}^{n_1} a_{\rho, v_i'}^{\dagger}\right) \left(\prod_{i=1}^{n_2} a_{\rho, \overline{\mu_i'}}^{\dagger}\right) |0\rangle$$
(5)

总的波函数:

$$|IM\rangle = \sum_{K\varphi} c_{K\varphi} |IMK\varphi\rangle$$
(6)

其中

 $|IMK\varphi\rangle = \frac{1}{\sqrt{2\left(1 + \delta_{K0}\delta_{\varphi,\overline{\varphi}}\right)}} \left(|IMK\rangle|\varphi\rangle + (-1)^{I-\kappa}|IM-K\rangle|\overline{\varphi}\rangle\right)$ (7)

B. Qi, et al., Phys. Lett. B 675, 175-180 (2009).

数值细节

- C系数: $C = \frac{38.8(N+3/2)}{j(j+1)}A^{-1/3}\beta$ • g因子: $g(p(n)) = g_{p(n)} - g_R$, $g_R = Z/A$ • 电四极矩: $Q_0 = (3/\sqrt{5\pi})R_0^2 Z\beta$, $R_0 = 1.2A^{1/3} fm$ • 形变参数: β, γ
- •转动惯量: ROI, 可调节, 调节大小由能谱符合所决定

粒子转子模型计算¹⁹⁸TI中的手征双重带

粒子转子模型[1]计算198TI中的手征双重带

组态: $\pi h_{9/2}^1 \otimes \nu i_{13/2}^{-1}$; 形变: $\beta_2 = 0.11, \gamma = 39.43^\circ$; 转动惯量:23 3.5 ¹⁹⁸T - band1-exp ¹⁹⁸TI band2-exp. 6 3.0 -O- band1-cal. ROI=23 –O— band2-cal. β=0.11,γ=39.43° 2.5 Energy [MeV] B(M1)/B(E2) 2.0 1.5 band1-exp. 1.0 band2-exp. ROI=23 -O-band1-cal. 0.5 β=0.11,γ=39.43° –O— band2-cal 0 0.0 10 12 15 8 14 16 18 20 11 12 13 14 16 17 Spin I [ħ] Spin I [ħ]

Figure: 粒子转子模型计算¹⁹⁸TI中手征双重带的能谱与电磁跃迁几率。

其中实验部分取自文献[2]。

[1]. B. Qi, et al., Phys. Rev. C 79, 041302(R) (2009).

[2]. P. L. Masiteng, et al., Eur. Phys. J. A. 45,39 (2010).

粒子转子模型计算¹⁹⁸TI中的手征双重带

Figure: 粒子转子模型(考虑质子中子相互作用)计算¹⁹⁸TI中手征双重 带的能谱与电磁跃迁几率。该图取自文献[1]。

[1]. P. L. Masiteng, et al., Eur. Phys. J. A. 45,39 (2010).

Figure: 粒子转子模型计算¹⁹⁵TI中手征双重带的能谱与电磁跃迁几率。 实验数据取自文献[2]。

[1]. B. Qi, et al., Phys. Lett. B 675, 175-180 (2009).

[2]. T. Roy, et al., Phys. Lett. B 782,768 (2018).

粒子转子模型计算¹⁹⁵TI中的手征双重带

粒子转子模型[1]计算¹⁹⁵TI中的三准粒子手征带 组态: $\pi h_{9/2}^1 \otimes \nu i_{13/2}^{-2}$; B2带形变: $\beta_2 = 0.19, \gamma = 30.5^\circ$; B2a带形 变: $\beta_2 = 0.19, \gamma = 48^\circ$;转动惯量:10

Figure: 粒子转子模型计算¹⁹⁵TI中手征双重带的能谱与电磁跃迁几率。 实验数据取自文献[2]。

[1]. B. Qi, et al., Phys. Lett. B 675, 175-180 (2009).

[2]. T. Roy, et al., Phys. Lett. B 782,768 (2018).

目录

1 引言

- 2 190核区TI同位素链中的候选手征核
 - 理论框架与数值细节
 - 奇奇核192-202TI中的候选手征核
 - 奇A核¹⁹³⁻¹⁹⁹TI中的候选手征核
- 3 与实验观测比较
 - 粒子转子模型理论框架与数值细节
 - 粒子转子模型计算198TI中的手征双重带
 - 粒子转子模型计算195TI中的三准粒子手征带

④ 总结与展望

总结与展望

总结:

本工作利用相对论平均场理论计算了190核区¹⁹²⁻²⁰²TI,基于计算的高-j组态与三轴形变,预言了可能存在的手性原子核。

Candidate chiral nuclei in thallium isotopes within triaxial relativistic mean field theory, X. Lu, B. Qi, H. Jia, C. Liu, and S. Y. Wang, submitted to the *Phys. Rev. C*

● 利用粒子转子模型计算了¹⁹⁸TI中的两准粒子手征带与¹⁹⁵TI中的三准粒 子手征带,对于¹⁹⁸TI,计算结果与实验符合的很好。对于¹⁹⁵TI中的手 性还需进一步讨论。

展望:

• 期待本次工作能够激发实验对于190核区手性的进一步探索。

附录

Figure: 粒子转子模型计算¹⁹⁸TI中手征双重带的能谱与电磁跃迁几率。

实验数据取自文献[2]。

B. Qi, et al., *Phys. Rev. C* 79, 041302(R) (2009).
 P. L. Masiteng, et al., *Eur.Phys. J. A.* 45,39 (2010).

附录

Figure: 粒子转子模型计算¹⁹⁸TI中手征双重带的能谱与电磁跃迁几率。

实验数据取自文献[2]。

B. Qi, et al., *Phys. Rev. C* 79, 041302(R) (2009).
 P. L. Masiteng, et al., *Eur.Phys. J. A.* 45,39 (2010).

粒子转子模型计算¹⁹⁵TI中的手征双重带 多准粒子转子模型[1]计算¹⁹⁵TI中的三准粒子手征带 组态: $\pi h_{9/2}^1 \otimes \nu i_{13/2}^{-2}$;形变: $\beta_2 = 0.19, \gamma = 30.5^\circ$;转动惯量:10

Figure: 粒子转子模型计算¹⁹⁵TI中手征双重带的能谱与电磁跃迁几率。 实验数据取自文献[2]。

B. Qi, et al., *Phys. Lett. B* 675, 175-180 (2009).
 T. Roy, et al., *Phys. Lett. B* 782,768 (2018).

粒子转子模型计算¹⁹⁵TI中的手征双重带 多准粒子转子模型[1]计算¹⁹⁵TI中的三准粒子手征带 组态:π $h_{9/2}^1 \otimes \nu i_{13/2}^{-2}$;形变:β₂ = 0.19,γ = 30.5°;转动惯 量:ROI = J₀√1+bI(I+1),J₀ = 0.3, b = 5

Figure: 粒子转子模型计算¹⁹⁵TI中手征双重带的能谱与电磁跃迁几率。 实验数据取自文献[2]。

粒子转子模型计算¹⁹⁵TI中的手征双重带 多准粒子转子模型[1]计算195TI中的三准粒子手征带 组态: $\pi h_{9/2}^1 \otimes \nu i_{13/2}^{-2}$; 形变: $\beta_2 = 0.19, \gamma = 48^\circ$; 转动惯量:10 ¹⁹⁵T] ¹⁹⁵Tl B2a-exp. B2a-cal. 5 Energy [MeV] 3(M1)/B(E2) B2a-exp. B2a-cal β=0.19,γ=48° 0 β=0.19,γ=48° 2 12 14 18 18 19 16 20 14 15 16 17 20 Spin [ħ] Spin [ħ]

Figure: 粒子转子模型计算¹⁹⁵TI中手征双重带的能谱与电磁跃迁几率。 实验数据取自文献[2]。

B. Qi, et al., *Phys. Lett. B* 675, 175-180 (2009).
 T. Roy, et al., *Phys. Lett. B* 782,768 (2018).