第十七届全国核物理大会 武汉 2019.10.08-12

Elliptic flow splitting between protons and antiprotons from hadronic potentials

Pengcheng Li (李鹏程)

Collaborators: Qingfeng Li (HUZU), Yongjia Wang (HUZU), Jan Steinheimer (FIAS), Hongfei Zhang (LZU)

Outline

1 / Background

2/ UrQMD model

3/ $\,$ Results and discussions $\,$

4/ Summary and outlook

Outline

1 / Background

2/ UrQMD model

3/ Results and discussions

4/ Summary and outlook

Background

Future in HIAF

Table 1 Typical beam parameters from the BRing. The beam intensities are given in the unit of particles per pulse (ppp).

Ion species	$\rm Energy/(GeV/u)$	Intensity/ppp
Р	9.30	$2.0{\times}10^{12}$
$^{18}O^{6+}$	2.60	6.0×10^{11}
$^{78}{ m Kr^{19+}}$	1.70	3.0×10^{11}
$^{209}{ m Bi}^{31+}$	0.85	1.2×10^{11}
$^{238}\mathrm{U}^{34+}$	0.80	1.0×10^{11}

,	g
最大磁刚度15 Tm	1.0×10 ⁷ ppp(放射性次 级束流)
1.5 GeV/u $(A/Z = 2)$ 1.0 GeV/u $(^{238}U^{92+})$	10 ^{9~10} ppp(高电荷态 稳定重离子束)

Guoqing Xiao, *et al.*, Nuclear Physics Review, 2017, 34(3): 275-283. Xiaohong Zhou, Nuclear Physics Review, 2018, 35(4): 339-349.

HUZHOU UNIVERSITY Highlights of recent RHIC physics

HUZHOU UNIVERSITY Explanations for v_2 splitting

- Different hadronic and partonic potentials for particles and antiparticles J. Xu, L.W. Chen, C.M. Ko, Z.W. Lin, PRC 85, 041901(R) (2012); J. Xu, T. Song, C. M. Ko, F. Li, PRL 112, 012301 (2014) the different mean-field potentials for hadrons and antihadrons or quarks and antiquarks:
 - Stronger attractive potential for \overline{p} compared to p \rightarrow smaller $v_2(p)$,
 - > Attractive potential for K^- , repulsive for K^+
 - $\rightarrow v_2(K^-) < v_2(K^+),$
 - Slightly attractive potential for π^+ , repulsive for $\pi^ \rightarrow v_2(\pi^+) < v_2(\pi^-)$.

A repulsive vector mean-field potential for quarks but an attractive one for antiquarks in a baryon-rich quark matter.

The difference of v₂ between transported quarks and produced quarks. (By tracing the number of initial quarks in protons) B. Tu, et al., CPC 43, 054106 (2019).

PRC 86, 044903 (2012); 86,044905(2012); 91,024903(2015); PRD 92,114010(2015); PRL 107,052303(2011)...

Outline

1 / Background

2/ UrQMD model

3/ Results and discussions

4/ Summary and outlook

HUZHOU UNIVERSITY Brief introduction to the UrQMD

• Baryons are represented by Gaussian wave packets in the phase

$$\phi_i(\mathbf{r},t) = \frac{1}{(2\pi L)^{3/4}} \exp\left(-\frac{(\mathbf{r}-\mathbf{r}_i)^2}{4L}\right) \exp\left(\frac{i\mathbf{p}_i\cdot\mathbf{r}}{\hbar}\right)$$

• The Wigner distribution function f_i of the baryon i

$$f_i(\mathbf{r}, \mathbf{p}) = \frac{1}{(\pi\hbar)^3} \exp\left(-\frac{(\mathbf{r} - \mathbf{r}_i)^2}{2L}\right) \exp\left(-\frac{(\mathbf{p} - \mathbf{p}_i)^2 \cdot 2L}{\hbar^2}\right)$$

• Propagated according to Hamilton's equation of motion

$$\dot{\mathbf{r}}_{i} = \frac{\partial H}{\partial \mathbf{p}_{i}}$$
 and $\dot{\mathbf{p}}_{i} = -\frac{\partial H}{\partial \mathbf{r}_{i}}$ $T = \sum_{i}^{i} (E_{i} - m_{i}) = \sum_{i}^{i} (\sqrt{m_{i}^{2} + \mathbf{p}_{i}^{2}} - m_{i})$

ТТ

 $U = U_{\rm Sky}^2 + U_{\rm Sky}^3 + U_{\rm Yuk} + U_{\rm Cou} + U_{\rm Pau}$

T + T

Charged particles SIS energies

$$U = \alpha \left(\frac{\rho_b}{\rho_0}\right) + \beta \left(\frac{\rho_b}{\rho_0}\right)^{\gamma}$$

$$\alpha,\beta,\gamma \rightarrow \text{stiffness of the EoS}$$

• The density of the baryon

The Skyrme potential

$$\rho_b = \int \rho(\mathbf{r}_i) \rho \, d\mathbf{r} = \int \rho(\mathbf{r}_i) \sum_j \rho(\mathbf{r}_j) d\mathbf{r} = \frac{1}{(4\pi L^2)^{3/2}} \sum_j e^{-\frac{(\mathbf{r}_i - \mathbf{r}_j)^2}{4L^2}}$$

J. Aichelin, Phys. Rep. 202, 233 (1991); M. Bleicher *et al.*, JPG 25 1859 (1999) ; S. A. Bass *et al.*, Prog. Part. Nucl. Phys.41:255-369 (1998); Q. F. Li *et al.*, PRC 83.044617 (2011). **Potential updates**

- The momentum-dependent term: $U_{md} = \sum_{k=1,2} \frac{t_{md}^k}{\rho_0} \int d\mathbf{p}_j \frac{f(\mathbf{r}_i, \mathbf{p}_j)}{1 + [(\mathbf{p}_i \mathbf{p}_j)/a_{md}^k]^2}$
- Hamiltonian: the sum of the single-particle energy E_i

$$H = \sum_{i=1}^{N} \sqrt{\mathbf{p}_{i}^{2} + m_{i}^{2} + 2m_{i}V_{i}},$$

The equations of motion are then:

$$\frac{d\mathbf{r}_i}{dt} \approx \frac{\partial H}{\partial \mathbf{p}_i} = \frac{\mathbf{p}_i}{E_i} + \sum_{j=1}^N \frac{m_j}{E_i} \frac{\partial V_i}{\partial \mathbf{p}_i},$$

$$\frac{d\mathbf{p}_i}{dt} \approx -\frac{\partial H}{\partial \mathbf{r}_i} = -\sum_{j=1}^N \frac{m_j}{E_i} \frac{\partial V_i}{\partial \mathbf{r}_i}.$$

The relativistic effects on the relative distance and the relative momentum: $\tilde{\mathbf{r}}_{ij}^2 = \mathbf{r}_{ij}^2 + \gamma_{ij}^2 (\mathbf{r}_{ij} \cdot \beta_{ij})^2$,

$$\tilde{\mathbf{p}}_{ij}^{2} = \mathbf{p}_{ij}^{2} - (E_{i} - E_{j})^{2} + \gamma_{ij}^{2} \left(\frac{m_{i}^{2} + m_{j}^{2}}{E_{i} + E_{j}}\right),$$
$$\beta_{ij} = \frac{\mathbf{p}_{i} + \mathbf{p}_{j}}{E_{i} + E_{j}}, \qquad \gamma_{ij} = \frac{1}{1 - \beta_{ij}^{2}}.$$

M. Isse *et al.,* PRC 72 064918 (2005)

6/16

Potential updates

- At higher beam energies, the Yukawa-, Pauli-, and symmetry-potentials of baryons becomes negligible, while the Skyrme- and the momentum-dependent part of potentials still influence the whole dynamical process of HICs
- Potentials for pre-formed hadrons
 - At high energies, particle production is dominated by the string mechanism
 - The formation time of the hadron is determined by the "yo-yo" mode. During this time, the **pre-formed particles (string fragments that will be projected onto hadron states later)** are usually treated to be free-streaming.

7/16

Potential updates

How to consider the potential for "pre-formed" hadrons?

For "pre-formed" particles from string fragmentation, the similar density dependent terms as the formed baryons are used, but without the Yukawa, the Coulomb, and the momentum dependent terms.

The "pre-formed" mesons act like "pre-formed" baryons but with a reduction factor (2/3) due to the quark-number difference.

The potential interaction between formed and "pre-formed" particles is neglected.

The "pre-formed" particles also contribute to the hadronic density (for "pre-formed" mesons, the 2/3 factor is considered).

$$U = \mu \left(\frac{\rho_h}{\rho_0}\right) + \nu \left(\frac{\rho_h}{\rho_0}\right)^g, \quad \rho_h = \sum_{i \neq j} c_i c_j \rho_{ij}$$

$$c_{i,j} = 1: \text{ formed and pre-formed baryons,}$$

$$c_{i,j} = 2/3: \text{ pre-formed mesons ;}$$

$$c_{i,j} = 0: \text{ formed mesons}$$

Outline

1 / Background

2/ UrQMD model

3/ Results and discussions

4/ Summary and outlook

Results and discussions

HUZHDU UNIVERSITY

Results and discussions

Time evolution of density

HUZHOU UNIVERSITY Results from UrQMD: v_2 difference

Effects of hadronic mean-field potentials on v_2 splitting

Effects of hadronic mean-field potentials on v_2 splitting

HUZHOU UNIVERSITY Results from UrQMD: v_2 difference

Outline

1 / Background

2/ UrQMD model

3/ Results and discussions

4/ Summary and outlook

The v_2 splitting, observed for particles and antiparticles, can be explained by the inclusion of proper hadronic interactions.

The difference in v_2 between protons and antiprotons depends on the centrality and the rapidity windows. With smaller centrality and/or rapidity acceptance, the observed v_2 splitting is more sensitive to the beam energy, indicating a stronger net baryon density dependence of the effect.

The v_2 splitting for 0-80% central Au+Au collisions with $|\eta|<1$ still exists below 7.7 GeV, and the splitting does not strongly depend on the collision energy.

We therefore suggest to measure the difference of v_2 between protons and antiprotons at various centralities and rapidity bins at lower beam energies as an indicator to explore the nuclear potential in this beam energy range.

THANKS

Pengcheng Li

lipch16@lzu.edu.

Qingfeng Li | liqf@zjhu.edu.cn

Effects of EoS

Effects of EoS

Three-fluid model Yu. B. Ivanov, et al., EPJA 52, 247 (2016).

FIG. 24. Energy dependence of v_2 near midrapidity ($-1 < \eta < 1$) for $\sqrt{s_{NN}} = 9.2$ GeV 0–60% central Au + Au collisions. Only statistical errors are shown. The results of STAR charged-hadron v_2 [55] are compared with those measured by E877 [56], NA49 [54], PHENIX [57], and PHOBOS [46,50,58] collaborations.

¹⁹⁷Au+¹⁹⁷Au; s^{1/2}_{NN}=7.7 GeV; |η|<1

Fig.(a), the main production mechanism at t < 5 fm/c is string excitation and fragmentation, and that this production mechanism still plays visible role up to $t \sim 10$ fm/c. Hence, the preformed hadron potentials will definitely provide a visible contribution to the early pressure.

Fig.(b), if switch off the pre-formed hadron potentials but keep the formed ones, the time evolution of \bar{p} is almost the same as that with the cascade mode. Means that the mechanism of string excitation and fragmentation is essential to the production of \bar{p} .

Time evolution of yields

For strange particle production, in addition to the string mechanism, the rescattering process of hadrons are also important:

- (i) the rapid increase of the Ξ^- yield during the time 3~30 fm/c,
- (ii) the suppression effect of potentials on both the yield mainly at the low transverse masses and the total yield at t = 30 fm/c,
- (iii) the contribution of formed hadron potentials to Ξ^- yield.

Transverse mass spectra

另外,当粒子的质量与纵向动量相比可以忽略时,E=p,由此可得。

$$y \approx \frac{1}{2} \ln \frac{1 + \cos \theta}{1 - \cos \theta} = -\ln tg \frac{\theta}{2} = \eta$$
,

其中 θ 是粒子动量与纵方向的夹角, η 是实验中常用的量,称为赝快度。32

Explanations for v_2 splitting HUZHDU UNIVERSITY

Different hadronic and partonic potentials for particles and antiparticles J. Xu, L.W. Chen, C.M. Ko, Z.W. Lin, PRC 85, 041901(R) (2012); J. Xu, T. Song, C. M. Ko, F. Li, PRL 112, 012301 (2014) the different mean-field potentials for hadrons and antihadrons or quarks and antiquarks: A multiphase transport (AMPT) model with string melting PRC 85, 041901(R) (2012) Au+Au at b = 8 fm $U_{N,\bar{N}}(\rho_B,\rho_{\bar{B}}) = \Sigma_s(\rho_B,\rho_{\bar{B}}) \pm \Sigma_v^0(\rho_B,\rho_{\bar{B}})$ 40 string melting AMPT P)-v₂(P)]/v₂(P) (%) $\Sigma_s(\rho_B, \rho_{\bar{B}})$ nucleon scalar self-energies, |y| < 1solid: without U $\Sigma_v^0(\rho_B, \rho_{\bar{B}})$ nucleon vector self-energies 20 open: with U ■ : p and p "+" for nucleons, "-" for antinucleons \blacktriangle : K⁺ and K⁻ • : π^{\dagger} and π^{\dagger} Stronger attractive potential for \overline{p} compared to p \rightarrow smaller $v_2(p)$, Attractive potential for K^- , repulsive for $K^+ \rightarrow v_2(K^-) < v_2(K^+)$, Slightly attractive potential for π^+ , repulsive for $\pi^- \rightarrow v_2(\pi^+) < v_2(\pi^-)$. 10 20 30 40 3-flavor Nambu-Jona-Lasinio transport model s_{NN}^{1/2} (GeV) $\mathcal{L} = \bar{\psi}(i \not\partial - M)\psi + \frac{G}{2}\sum_{a}^{8} \left[(\bar{\psi}\lambda^{a}\psi)^{2} + (\bar{\psi}i\gamma_{5}\lambda^{a}\psi)^{2} \right]$ PRC 94, 054909 (2016) Ν U_{u,u} (MeV) ⊂ عربي 200--200 $+ \sum_{n=0}^{8} \left[\frac{G_V}{2} (\bar{\psi}\gamma_\mu \lambda^a \psi)^2 + \frac{G_A}{2} (\bar{\psi}\gamma_\mu \gamma_5 \lambda^a \psi)^2 \right]$ (MeV) N 0.5 -400 $- K \left[\det_f \left(\bar{\psi}(1+\gamma_5)\psi \right) + \det_f \left(\bar{\psi}(1-\gamma_5)\psi \right) \right],$ $R_v = 1.1$ $\mathsf{U}_{\mathsf{K}^{*},\mathsf{K}^{*}}$ (MeV) K U_{s,s} (MeV) .0.5 S -200 With a nonvanishing G_V , it further gives rise to a repulsive K -200 -400 vector mean-field potential for guarks but an attractive one (d) for antiquarks in a baryon-rich quark matter. 8 0.0 0.1 0.3 $\rho_{\rm B}~({\rm fm}^{-3})$

 ρ_{σ} (fm⁻³)

HUZHOU UNIVERSITY Explanations for v_2 splitting

HUZHOU UNIVERSITY Explanations for v_2 splitting

- By variations in the widths of quark and antiquark rapidity distribution. V. Greco, et al., PRC 86, 044905 (2012).
- Conservation of baryon charge, strangeness, and isospin. J. Steinheimer, et al., PRC 86, 044903 (2012)
- Hydrodynamics at finite baryon chemical potential.
 Y. Hatta, *et al.*, PRD 92, 114010 (2015).
- Energy dependent difference of the transverse expansion velocity β between particles and corresponding antiparticles. X. Sun, et al., PRC 91, 024903 (2015).

HUZHOU UNIVERSITY Results from UrQMD: v_2 difference

