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Outline
————————————————
1. A novel approach on tau decays

Algebra method [LRD, Pavao, Sakai & Oset, EPJA55(2019)20]

2. First applications on tau decays
a) Scalar resonances [LRD, Yu & Oset, PRD99(2019)016021]

b) Axial-vector resonances [LRD, Roca & Oset, PRD99(2019)096003]

=⇒ testing the nature of these resonances within the chiral unitary
approach

c) Polarization amplitude [LRD & Oset, EPJA54 (2018) 219]
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1. A novel approach on tau decays

LRD, Pavao, Sakai & Oset, “τ− → ντM1M2, with M1,M2 pseudoscalar
or vector mesons”, EPJA55(2019)20

Pseudoscalar (P) Vector (V)
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Motivation
1) Tau decays have been instrumental to learn about weak interaction as
well as strong interaction.
2) Several modes are well measured, τ− → ντPP and τ− → ντPV.
3) Surprisingly, there are no τ− → ντVV reported in the PDG

=⇒ we wonder whether there is some fundamental
reason for this experimental fact ???

a) P and V mesons differ only by the spin arrangement of the quarks
=⇒ possible to relate the rates of decay for τ− → ντPP,PV,VV

b) one important issue is charge symmetry [S. Weinberg, PR112(1958) 1375]

one interesting reaction τ− → ντπ
−η(η′)

[Leroy & Pestieau, PLB72(1978)398] [forbidden by G-parity]

The G-parity plays an important role in these reactions. We offer
a new perspective into this issue.
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Algebra method [EPJA55(2019)20]

The derivation requires some patience, but we succeed
using Racah algebra!!!

1) no any free parameter
2) relate the different processes

a) relevant form factors would be the same
b) Yet, the structures can be very different for the produced P or V

————————————————
Finally we obtained the analytical amplitudes for each
reaction
1) We evaluated the branching ratios of rates for PP, PV & VV
cases =⇒ good agreement with experiment
2) make some predictions of invariant mass distributions and
branching ratios of rates
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Diagrams for elementary τ− → ντdū decay (left)
Hadronization through q̄q creation with vacuum quantum numbers (right)

——————————————————————————–

ντ

τ−

W− d,m

ū,m′

M =

 uū ud̄ us̄
dū dd̄ ds̄
sū sd̄ s̄s


Cabibbo-favored dū production

dū→
3∑

i=1

d q̄i qi ū = M2i Mi1 = (M ·M)21

Cabibbo-suppressed sū production

sū→
3∑

i=1

s q̄i qi ū = M3i Mi1 = (M ·M)31

Hadronization of the primary dū
pair to produce two mesons

ντ

τ−
W−

d,m

ū,m′

J,M
q̄, s

q, S3 − s
J ′,M ′

For the hadronization, we use the 3P0 model

1)L. Micu, Nucl. Phys. B 10, 521 (1969)
2)A. Le Yaouanc, et. al., Phys. Rev. D 8, 2223 (1973)
3)F. E. Close, An Introduction to Quark and Partons,
Academic Press, 1979

The 3P0 model has been widely used in the
literature and recently it has been found very
instrumental to address different problems in
hadron physics 7 / 42



P =


π0
√

2
+ η√

3
+ η′√

6
π+ K+

π− − π0
√

2
+ η√

3
+ η′√

6
K0

K− K̄0 − η√
3

+ 2η′√
6



Vµ =


ρ0
√

2
+ ω√

2
ρ+ K∗+

ρ− − ρ0
√

2
+ ω√

2
K∗0

K∗− K̄∗0 φ


µ

Cabibbo-favored dū production

(P · P)21 =
1√
2

(π−π0 − π0π−) +
1√
3

(π−η + ηπ−) +
1√
6

(π−η′ + η′π−) + K0K− ,

(P · V)21 =
1√
2

(π−ρ0 + π−ω)− π0ρ−√
2

+
ηρ−√

3
+
η′ρ−√

6
+ K0K∗− ,

(V · P)21 =
ρ−π0
√

2
+
ρ−η√

3
+
ρ−η′√

6
+

1√
2

(−ρ0π− + ωπ−) + K∗0K− ,

(V · V)21 =
1√
2

(ρ−ρ0 − ρ0ρ−) +
1√
2

(ρ−ω − ωρ−) + K∗0K∗− . (1)

Similarly, Cabibbo-suppressed sū production:
(P · P)31, (P · V)31, (V · P)31, (V · V)31
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Weak matrix elements in Standard Model (SM)

H = CLαQα

where C containing weak interaction
constants and radial matrix elements.

Lα is the leptonic current

Lµ = 〈ūν |γµ − γµγ5|uτ 〉

Qα is the quark current

Qµ = 〈ūd|γµ − γµγ5|vū〉

For the evaluation of the matrix element
Qµ we assume that the quark spinors are
at rest in that frame

ur =

(
χr

0

)
, vr =

(
0
χr

)

Q0 = 〈χ′|1|χ〉 ≡ M0

Qi = 〈χ′|σi|χ〉 ≡ Ni

Denoting for simplicity,

Lµν =
∑∑

LµLν†

The amplitudes∑∑ |t|2 =
∑∑

LµLν†QµQ∗ν

= L00M0 M∗0 + L0iM0 N∗i + Li0Ni M∗0 + LijNi N∗j

where we sum over the final polarizations of the
mesons produced.

Lµν is easily evaluated in [PRD92(2015)014031]
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p-wave production
————————————————

assuming d, ū quarks are produced in their ground state

=⇒ this leads to a negative parity qq̄ state, which makes
the pair of mesons after the hadronization to be
produced in p-wave.

[Later we find that p-wave production is compatible with ex-
periment of τ− → ντPP decays]
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Table 1 M0 matrix elements in p-wave

PP J = 0, J′ = 0 M0 = 0

PV J = 0, J′ = 1 M0 = (−1)−M−M′ 1√
6

q Y1,−(M+M′)(q̂) δM0

VP J = 1, J′ = 0 M0 = (−1)−M−M′ 1√
6

q Y1,−(M+M′)(q̂) δM′0

VV J = 1, J′ = 1 M0 = (−1)−M−M′ 1√
3
C(111; M,M′,M + M′) q Y1,−(M+M′)(q̂)

Table 2 Nµ matrix elements in p-wave

PP J = 0, J′ = 0 Nµ = 1√
6

q Y1,µ(q̂) δM0 δM′0

PV J = 0, J′ = 1 Nµ = (−1)1−M′ 1√
3

q Y1,µ−M′ (q̂)C(111; M′,−µ,M′ − µ) δM0

VP J = 1, J′ = 0 Nµ = (−1)−M 1√
3

q Y1,µ−M(q̂)C(111; M,−µ,M − µ) δM′0

VV J = 1, J′ = 1 Nµ = 1√
6

q Y1,µ−M−M′ (q̂){(−1)−M′δµM

+2 (−1)−MC(111; M,−µ,M − µ)C(111; M′,−M −M′ + µ,−M + µ)}
with q = p1 − p2, where p1, p2 are the momenta of the mesons produced.

It is the value of M0 = 0 for PP and G-parity =⇒ what makes the matrix
elements zero for the τ− → ντπ

−η(η′) channels
We show from a different perspective that τ− → ντπ

−η(η′) are forbidden
by G-parity =⇒ in coincidence with results obtained through different methods
[C. Leroy, J. Pestieau, PLB72(1978)398]
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Table 3 Signs resulting in the M0 and Nµ

amplitudes by permuting the order of the
mesons in p-wave production
PP PV VP VV

M0 0 − − +
Nµ − + + −

1) Taking the π−π0 channel

It comes with the combination π−π0 − π0π−. As a
consequence Nµ adds for the two terms and we have
a weight 2 1√

2
for the π−π0 channel

2) For interesting π−η channel
It comes with the combinations π−η + ηπ−, and
then the combination of the two terms cancels =⇒
do not have π−η production

Table 4 Weights for the different channels after
taking into account the M1M2 and M2M1

components after the hadronization
Channels hi (for M0) hi (for Nµ)
π0π− 0

√
2

π−η 0 0
π−η′ 0 0

p-wave production and G-parity
Table 5 Contributions of the different

non-strange M1M2 pairs. The cross indicates
non zero contribution for τ− → ντPP decays

Channels G-parity M0 Nµ
π−π0 + 0 ×
π−η − 0 0
π−η′ − 0 0

1) Taking into account the G-parity of the

mesons, we can associate a G-parity to all
nonstrange M1M2 pairs.

2) on the other hand, the G-parity can be
established from the original dū pair and the
operator producing them, 1 or σi

The G-parity for quarks belonging to the
same isospin multiplet is given

G = (−1)L+S+I

L = 0, I = 1
S = 0 for the “1” operator
S = 1 for the “σi” operator

=⇒ G-parity negative for the 1 operator
positive parity for the σi operator
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s-wave production
————————————————

Since the masses of these mesons are larger, the resulting momenta for
the mesons are much smaller and the p-wave mechanism will lead to
very small widths. Certainly, in this case, s-wave production shall be
preferable.

For τ− → ντPV and τ− → ντVV production, two mesons with
negative parity and s-wave have positive parity
=⇒ This means that the dū must be produced in an L′ = 1 state.

[Later we find that s-wave production is compatible with experi-
ment of τ− → ντPV and τ− → ντVV decays]
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M0 matrix elements in s-wave

PP J = 0, J′ = 0 M0 = 0

PV J = 0, J′ = 1 M0 = 1√
6

1
4π

VP J = 1, J′ = 0 M0 = 1√
6

1
4π

VV J = 1, J′ = 1 M0 = 1√
3

1
4π C(111; M,M′,M + M′)

Nµ matrix elements in s-wave

PP J = 0, J′ = 0 Nµ = 1√
6

1
4π δM0 δM′0 (−1)−µ

PV J = 0, J′ = 1 Nµ = −(−1)−µ 1√
3

1
4π C(111; M′,−µ,M′ − µ) δM0

VP J = 1, J′ = 0 Nµ = (−1)−µ 1√
3

1
4π C(111; M,−µ,M − µ) δM′0

VV J = 1, J′ = 1 Nµ = 1√
6

1
4π

{
δMµ + 2 (−1)

−µ−M′C (111; M,−µ,M − µ)

×C (111; M′,−M −M′ + µ,−M + µ)
}

Signs resulting in the M0 and Nµ amplitudes by permuting
the order of the mesons in s-wave production

PP PV VP VV
M0 − + + −
Nµ + − − +

14 / 42



The analytical amplitudes for each
reaction in s-wave production

1) PP, J = 0, J′ = 0

∑∑
|t|2 =

1
mτmν

(
1

4π

)2(
EτEν −

p2

3

)
1
2

h
2
i (2-a)

2) PV, J = 0, J′ = 1; VP, J = 1, J′ = 0

∑∑
|t|2 =

1
mτmν

(
1

4π

)2 [(
EτEν + p2) 1

2
h2

i +

(
EτEν −

p2

3

)
h

2
i

]
(2-b)

3) VV, J = 1, J′ = 1

∑∑
|t|2 =

1
mτmν

(
1

4π

)2 [(
EτEν + p2) h2

i +
7
2

(
EτEν −

p2

3

)
h

2
i

]
(2-c)
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hi and hi coefficient
————————————————

Table 6 hi and hi coefficient for different channels with the two
final mesons in s-wave production

channels hi (for M0) hi (for Nµ)
π−ρ0 0

√
2

π−ω
√

2 0
π0ρ− 0 -

√
2

ηρ− 2√
3

0
η′ρ− 2√

6
0

K∗0K∗− 1 1 Axial-vector resonances
ρ−ρ0

√
2 0

ρ−ω 0
√

2
ηK∗− 0 − 2√

3
tan θc

η′K∗− 3√
6

tan θc
1√
6

tan θc

K∗0K− 1 1 Scalar resonances
K0K∗− 1 1
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The final differential mass distribution
————————————————

dΓ

dMinv(M1M2)
=

2 mτ2 mν

(2π)3

1
4m2

τ

pν p̃1

∑∑
|t|2 (3)

where pν is the neutrino momentum in the τ rest frame

pν =
λ1/2(m2

τ ,m
2
ν ,M

2
inv(M1M2))

2Mτ

, p̃1 =
λ1/2(M2

inv(M1M2),m2
M1
,m2

M2
)

2Minv(M1M2)

and p̃1 the momentum of M1 in the M1,M2 rest frame.

Then by integrating Eq. (3) over the M1M2 invariant mass, we
obtain the width [more details can be found in EPJA55(2019)20]
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Comparison with invariant mass distributions
Invariant mass distribution for
τ− → ντK0

SK− decay (PP)
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Minv(K
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d
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d
M

in
v
(K

0
K

−
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CLEO
ALEPH
Babar

(a)

1

CLEO,PRD53(1996)6037;
ALEPH, EPJC4 (1998)29;

BaBar, PRD98(2018)032010 (precise spectrum)

The agreement of our results (a) with experiments
is relatively good, particularly taking into account

the very different shape compared to the (PV) case

Invariant mass distribution for
τ− → ντηK∗− decay (PV)

1.2 1.3 1.4 1.5 1.6 1.7 1.8
0
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d
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d
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v
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[a
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.u
n
it
s]

Belle

(a)
(b)

1

[Belle Collaboration],PLB672(2009)209

our results: (a) without a convolution (b) takes

into account the width of the K∗
Again the agreement with experiment is good, and
the shape of the distribution is very different to
the one of K−K0 (PP) =⇒ This supports our
conclusion that the PV pair is produced in s-wave
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The obtained results
———————————————-

[EPJA55(2019)20]

� From the comparison of our results with experiment
for rates of branching ratios and invariant mass distri-
butions finding that

a) PP case, p-wave production
b) PV and VV cases, s-wave production
� predictions for unmeasured decays

Comparison with other theoretical approaches
our results are in line with the results of other approaches
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2. Interesting applications -Part A

Final State Interaction + Triangle Singularity + The Chiral Uni-
tary Approach

L. R. Dai, Q. X. Yu & E. Oset, “Triangle singularity in τ− → ντπ
−f0(980) (a0(980))

decays” [arXiv:1809.1100 & PRD99 (2019) 016021]

=⇒ testing the nature of scalar f0(980) and a0(980) resonances

In the chiral unitary approach that the f0(980) and a0(980) are dynami-
cally generated resonances from the interaction of pseudoscalar mesons in
coupled channels [Oller & Oset, NPA620(1997) 438 and ...].
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τ− → ντπ
−f0(980) (a0(980))

—————————————-
From the work [EPJA55(2019)20] we obtain
the results for the J = 1, J′ = 0 case, which
correspond to the τ → ντK∗0K− decay

Note that while M0 is the same for VP and
PV productions, Ni changes sign. This sign
is essential for the conservation of G-parity
in the reaction.

Signs resulting in the M0 and Nµ amplitudes
by permuting the order of the mesons in s-
wave production

PP PV VP VV
M0 − + + −
Nµ + − − +

It was shown that the order in which the vector

and pseudoscalar mesons are produced is

essential to understand the G-parity symmetry of

these reactions

G-Parity
π f0(980) a0(980)
− + −

a) π−f0(980) will proceed with the
Ni amplitude

b) while π−a0(980) proceeds with
the M0 term

c) there is no simultaneous
contribution of the two terms in
these reactions

This we shall see analytically when

evaluating explicitly the amplitudes for

the next processes ...

Experimentally, the branching ratio
B(τ → ντK∗0K−) = 1

Γτ
Γ(τ →

ντK∗0K−) = (2.1± 0.4)× 10−3

We obtain
C2

Γτ
= (2.10± 0.40)× 10−5 MeV−3,

where the errors come from the
uncertainty of B(τ → ντK∗0K−)
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Diagram for the decay of τ− → ντπ
−π+π−

τ−
W−

(P )

ντ

K∗0 (P − q)

K −
(q) K

+

(P
− q −

k)
π−

(k)

R π+

π−
(a)

τ−
W−

ντ

K∗−

K 0 K̄
0

π−

R π+

π−
(b)

Diagram for the decay of τ− → ντπ
−π0η

τ−
W−

ντ

K∗0

K − K
+

π−

R π0

η
(a)

τ−
W−

ντ

K∗−

K 0 K̄
0

π−

R π0

η
(b)

(see ZHAO Qiang’s talk at 11:30, Oct.9 2019)22 / 42



Triangle Singularity (TS)

if three intermediate particles are on shell and K∗ and π− are
parallel =⇒ the mechanism generates a singularity in the ampli-
tude for zero width of the K∗, or a peak if the width is consid-
ered

M

L. D. Landau, Nucl. Phys. 13 (1959) 181;
Coleman, Norton, Nuovo Cim. 38
(1965)438;
More details in M. Bayar, F. Aceti, F. K.
Guo & E. Oset, PRD 94, 074039 (2016)

TS at the physical boundary can be obtained by solving the equation

qon+ = qa−,with qon+ =
1

2M

√
λ(M2,m2

1,m
2
2), qa− = γ (β E∗2 − p∗2)

where E∗2 = (m2
23 + m2

2 − m2
3)/(2m23) and p∗2 =

√
λ(m2

23,m
2
2,m

2
3)/(2m23)
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TS in simulating a resonance
———————————————-

requires very special kinematics process dependent !!!

In explaining successfully the COMPASS “a1(1420)” peak
[1] Mikhasenko, Ketzer & Sarantsev, PRD91,094015;
[2] Aceti, Dai & Oset, PRD94 (2016) 096015
“a1(1420) peak as the πf0(980) decay mode of the a1(1260) ”

In some particular modes, the production rate is enhanced by the
presence of a TS in the reaction mechanism.
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Evaluation of the triangle diagram
——————————————–
◦ In the chiral unitary approach
we calculated the KK̄ → π+π−(π0η) amplitudes
J. A. Oller and E. Oset, Nucl. Phys. A 620 (1997) 438;
W. H. Liang and E. Oset, Phys. Lett. B 737, 70 (2014);

J. J. Xie, L. R. Dai and E. Oset, Phys. Lett. B 742 (2015)363

◦ The K∗ → Kπ vertex is obtained from the VPP Lagrangian

LVPP = −ig 〈Vµ [P, ∂µP]〉

with the coupling g given by g = mV/2fπ in the local hidden gauge approach,
with mV = 800 MeV and fπ=93 MeV. The equation is rather general and it can
be obtained as well in massive Yang-Mills theory . From Eq. (0.6), the vertex
K∗ → Kπ is of the type ε[k − (−q− k)].
C. N. Yang and R. L. Mills, Phys. Rev. 96(1954)191;
S. Gasiorowicz and D. A. Geffen, Rev. Mod. Phys. 41(1969)531;
J. Schechter and Y. Ueda, Phys. Rev. 188(1969)2184;

U. G. Meissner, Phys. Rept. 161 (1988)213;
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tL =
∫ d3q

(2π)3
1

8ωK∗ωK+ωK−
1

k0−ωK+−ωK∗+i
ΓK∗

2

(
2 + q·k

|k|2
)

1
P0+ωK−+ωK+−k0

× 1
P0−ωK−−ωK+−k0+iε

2P0ωK−+2k0ωK+−2(ωK−+ωK+ )(ωK−+ωK++ωK∗ )

P0−ωK∗−ωK−+i
ΓK∗

2

θ(qmax − q∗)

F. Aceti, J. M. Dias and E. Oset, Eur. Phys. J. A 51 (2015) 48;
M. Bayar, F. Aceti, F. K. Guo and E. Oset, Phys. Rev. D 94 (2016) 074039

Explicit filter of G-parity states———————————————-
For the production of π−f0(980) =⇒ negative G-parity∑∑

|t|2 = L̄ijÑi Ñ∗j g2 | 2 tK+K−,π+π− |2

=
C2

mτmν

(
EτEν −

1
3

p2
)

1
3

1
(4π)2 k2|tL|2 g2 | 2 tK+K−,π+π− |2

For the production of π−a0(980) =⇒ positive G-parity∑∑
|t|2 = L̄00M̃0 M̃∗0 g2 | 2 tK+K−,π0η|2

=
C2

mτmν

(
EτEν + p2) 1

6
1

(4π)2 k2|tL|2 g2 | 2 tK+K−,π0η|2
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For τ− → ντπ
−π+π− decay, the double differential mass distribu-

tion for Minv(π
+π−) and Minv(π

−f0) is given

1
Γτ

d2Γ

dMinv(π−f0)dMinv(π+π−)
=

1
(2π)5

1
Γτ

k p′ν q̃π+

2mτ2mν

4M2
τ

∑∑
|t|2

k =
λ1/2(M2

inv(π−f0),m2
π ,M

2
inv(π+π−))

2Minv(π−f0)
,

p′ν =
λ1/2(m2

τ ,m
2
ν ,M

2
inv(π−f0))

2mτ
,

q̃π+ =
λ1/2(M2

inv(π+π−),m2
π ,m

2
π)

2Minv(π+π−)
.

1200 1300 1400 1500 1600 1700

−2

0

2

4

6

8

10

Minv(π
−R) [MeV]

t L
[1
0−

8
M
eV

−
2
]

|tL|
Re(tL)

Im(tL)

� It can be observed that Re(tT) has a peak around 1393 MeV, and Im(tT) has a peak around 1454 MeV, �
there is a peak for |tT | around 1425 MeV.
� The peak of the real part is related to the K∗K threshold
� The imaginary part, that dominates for the larger π−R invariant masses, to the triangle singularity

Note that around 1420 MeV and above the triangle singularity dominates the reaction
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double differential mass distribution
—————————————-

For the τ− → ντπ
−π+π− decay
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For the τ− → ντπ
−π0η decay
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0
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2
]
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b
c

Lines a, b and c show the values at Minv(π−R) 1317 MeV, 1417 MeV, and 1517 MeV, respectively, as a
function of Minv(R)

� The distribution with largest strength is near Minv(π−R)=1417 MeV
� A strong peak in the π+π− mass distribution around 980 MeV corresponding to the f0(980)
� The distinctive cusp like a0(980) peak around 990 MeV for the π0η mass distribution
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The branching ratios
—————————

In order to give a branching ratio for what an

experimentalist would brand as π−f0(980) or

π−a0(980) decay, we must integrate the strength

of the double differential width.

1200 1300 1400 1500 1600 1700

0.5

1

1.5

Minv(π
−R) [MeV]

1 Γ
τ

d
Γ

d
M

in
v
(π

−
R

)
[1
0−

6
M
eV

−
1
]

R = f0

R = a0

Integrating dΓ
dMinv(π−R)

over Minv(π−R) we obtain
the branching fractions

B(τ− → ντπ
−f0(980); f0(980)→ π+π−)

= (2.6± 0.5)× 10−4

B(τ− → ντπ
−a0(980); a0(980)→ π0η)

= (7.1± 1.4)× 10−5

Since the rate of f0 → π0π0 is one half that of
f0 → π+π−, so

B(τ− → ντπ
−f0(980)) = (3.9± 0.8)× 10−4

The errors in these numbers count only the relative
error of the branching ratio.
These numbers are within measurable range since
branching ratios of 10−5 and smaller are quoted in
the PDG for the τ decays.
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2. Interesting applications -Part B

Final State Interaction + Triangle Singularity + The Chiral Uni-
tary Approach

L. R. Dai, L. Roca & E. Oset, “τ decay into a pseudoscalar and an axial-vector meson” [arX-

iv:1811.06875 & PRD99 (2019) 096003]

=⇒ testing the nature of axial-vector resonances in the τ decay

In the chiral unitary approach that the f1(1285), b1(1235), h1(1170),
h1(1380), a1(1260) and two poles of the K1(1270) are dynamically generat-
ed axial-vector resonances from the interaction of vector-pseudoscalar (VP)
mesons in coupled channels. [L. Roca, E. Oset and J. Singh, PRD72 (2005) 014002]
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Diagrams for the decay of τ− → ντπ
−A, with A axial vectors

τ−
W−

ντ

K∗0

K ∗− K
+

π−

A
(a)

τ−
W−

ντ

K∗−

K ∗0 K̄
0

π−

A
(b)

The same as above but for τ− → ντρ
−ρ0, ντρ

0ρ− decays

τ−
W−

ντ

ρ−

ρ0
π0

π−

A
(a)

τ−
W−

ντ

ρ0

ρ−
π+

π−

A
(b)
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G-Parity
π f1(1285) b1(1235)
− + +

h1(1170) h1(1385) a1(1260)
− − −

a) π−f1(1285) and π−b1(1235) will
proceed with the Ni amplitude

b) while π−h1(1170), π−h1(1380)
and π−a1(1260) proceeds with
the M0 term

c) there is no simultaneous
contribution in these reactions

Explicit filter of G-parity states
————————————–
For G-parity positive axial states:∑∑

|t|2 = C2

mτ mν

1
(4π)2

7
6 (EτEν − 1

3 p2)

g2k2|gA,K∗K̄ |2 |tL(K∗K̄∗)|2

For G-parity negative axial states:∑∑ |t|2 = C2

mτ mν

1
(4π)2

1
3 (EτEν + p2) g2 k2

|(−1)gA,K∗K̄ tL(K∗K̄∗)− 2 D(−1)gA,ρπtL(ρρ)|2

Experimentally, the branching ratio

B(τ → ντK∗0K∗−) =
1

Γτ
Γ(τ → ντK∗0K∗−) = (2.1± 0.5)× 10−3

We obtain C
2

Γτ
= (5.0)× 10−4 MeV−1
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The final branching ratios
—————————

The branching ratios for τ− → ντπ
−A

B
h1(1170) 3.1× 10−3

a1(1260) 1.3× 10−3

b1(1235) 2.4× 10−4

f1(1285) 2.4× 10−4

h1(1380) 3.8× 10−5

The branching ratios for τ− → ντK−K1 decays
B

K1(1) 2.1× 10−5

K1(2) 4.1× 10−6

These numbers are within measurable range!!!
[details in PRD99 (2019) 096003]
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2. Interesting applications -Part C

Polarization amplitudes

L. R. Dai & E. Oset, “Polarization amplitudes in τ− → ντVP decay beyond the Standard Model”

[arXiv:1809.02510 & EPJA54 (2018) 219]
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Application of the established formalism
—————————————————

[EPJA55(2019)20]

τ− → ντVP
project over spin components
M,M′ are the third components of the K∗0 and K−, respectively,

K∗0 J = 1 M = 0,±1
K− J′ = 0 M′ = 0

The quantization axis is taken along the direction of the
neutrino in the τ− rest frame.
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We obtain the τ decay amplitude
for different spin M components

[EPJA54(2018)219]

1) M = 0 ∑∑
|t|2 =

1
mτmν

1
6

1
(4π)2

(
3EτEν − p2

)

2) M = 1 ∑∑
|t|2 =

1
mτmν

1
6

1
(4π)2

[
3EτEν + p2 + (3Eν + Eτ )p

]

3) M = −1 ∑∑
|t|2 =

1
mτmν

1
6

1
(4π)2

[
3EτEν + p2 − (3Eν + Eτ )p

]
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The final differential width for each M

dΓ

dM(K∗0K−)
inv

=
2 mτ2 mν

(2π)3

1
4m2

τ

pν p̃1

∑∑
|t|2

where pν is the momentum of neutrino in the τ rest frame and p̃1 of K∗0 in the K∗0K− rest frame
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M = +1

M = 0
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=⇒We show the individual contributions are different for each M
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Ratios divided by the total differential width R
=⇒ propose the measurement

R = dΓ

dM(K∗0K−)
inv

|M=+1 + dΓ

dM(K∗0K−)
inv

|M=0 + dΓ

dM(K∗0K−)
inv

|M=−1

the difference 1
R

[
dΓ

dM(K−K∗0)
inv

|M=+1 − dΓ

dM(K−K∗0)
inv

|M=−1
]
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in
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(a) M = +1

(b) M = 0

(c) M = −1

(d) difference different contributions
for each M

line (d): the difference
=⇒ a big sensitivity of
magnitude
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Consideration of right-handed quark currents
——————————————————————–

� The literature about models beyond the Standard Model (BSM)
is large and this is not the place to discuss it

� Some models BSM have quark currents that contain the combi-
nation γµ + γµγ5 [X. G. He and G. Valencia, PRD 87(2013)014014¶PLB
779(2018)52]

The above models could be accommodated with an operator

a(γµ − γµγ5) + b(γµ + γµγ5)

= (a + b)
{
γµ − a−b

a+bγ
µγ5

}
= γµ − αγµγ5 .

we will study the distributions for different M′ as a function of α
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The new differential widths (BSM)

[EPJA54(2018)219]

1) M = 0

∑∑
|t|2 =

1
mτmν

1
6

1
(4π)2

{(
EτEν + p2

)
+ 2α2

(
EτEν − p2

)}

2) M = 1

∑∑
|t|2 =

1
mτmν

1
6

1
(4π)2

{
(EτEν + p2) + 2α(Eν + Eτ )p + [2EτEν + (Eν − Eτ )p]α2

}

3) M = −1

∑∑
|t|2 =

1
mτmν

1
6

1
(4π)2

{
(EτEν + p2)− 2α(Eν + Eτ )p + [2EτEν − (Eν − Eτ )p]α2

}
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Individual contributions depend
strongly on different α

case (d): very sensitive to the
change of α

=⇒ This magnitude should be
easy to differentiate experimen-
tally
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