

光核反应的新应用 μ原子中的核极化效应

计晨

华中师范大学

第十七届全国核物理大会 武汉 2019.10.8-12

质子半径之谜

- 电子-质子作用实验: $r_p = 0.8770(45)$ fm
 - eH 氢原子光谱
 - *e*−*p* 质子散射
- μ 子-质子作用实验: $r_p = 0.8409(4)$ fm
 - μH原子 兰姆位移 (ΔE_{2S-2P}) [PSI-CREMA]
 Pohl et al., Nature (2010); Antognini et al., Science (2013)

The New York Times

氘核半径之谜

µ²H 兰姆位移: r_d = 2.12562(78) fm Pohl, et al., Science (2016)
 CODATA-2014: r_d = 2.1415(45) fm

• 同位素半径位移
$$r_d^2 - r_p^2$$
:
 $\delta(\mu^2 H, \mu H) = 3.8112(34) \text{ fm}^2$
 $\delta(e^2 H, eH) = 3.8201(07) \text{ fm}^2$ Parthey, et al., PRL (2010)

破解半径之谜

● 半径之谜来由的可能解释:

- 轻子普适性破坏?
- 奇异强子结构?
- 被忽视的实验系统误差?

目前没有哪一种解释已被完全接受

破解半径之谜

- 半径之谜来由的可能解释:
 - 轻子普适性破坏?
 - 奇异强子结构?
 - 被忽视的实验系统误差?

目前没有哪一种解释已被完全接受

- 破解半径之谜的新实验
 - 电子-质子散射 (JLab, Mainz, Tohoku U.)
 - µ子-质子散射 (PSI-MUSE)

破解半径之谜

- 半径之谜来由的可能解释:
 - 轻子普适性破坏?
 - 奇异强子结构?
 - 被忽视的实验系统误差?

目前没有哪一种解释已被完全接受

- 破解半径之谜的新实验
 - 电子-质子散射 (JLab, Mainz, Tohoku U.)
 - μ子-质子散射 (PSI-MUSE)
 - 轻质量μ原子精细光谱测量 (PSI-CREMA)
 - μH [Pohl *et al.*, Nature (2010); Antognini *et al.*, Science (2013)]
 μ²H [Pohl *et al.*, Science '16]
 - µ^{3,4}He⁺
 [数据分析中]
 - μ³H, μLi, μBe [计划中]

从精细光谱测量提取核电荷半径

● 从µ原子兰姆位移提取核电荷半径

 $\delta E_{\rm LS} = \delta_{\rm QED} + \mathcal{A}_{\rm OPE} R_E^2 + \delta_{\rm TPE}$

● 从µ原子兰姆位移提取核电荷半径

 $\delta E_{\rm LS} = \delta_{\rm QED} + \mathcal{A}_{\rm OPE} R_E^2 + \delta_{\rm TPE}$

● 量子电动力学修正:

- 真空极化效应
- 轻子自能修正
- 相对论反冲修正

● 从µ原子兰姆位移提取核电荷半径

 $\delta E_{\rm LS} = \delta_{\rm QED} + \mathcal{A}_{\rm OPE} R_E^2 + \delta_{\rm TPE}$

● 核结构效应修正:

● 从µ原子兰姆位移提取核电荷半径

$$\delta E_{\rm LS} = \delta_{\rm QED} + \mathcal{A}_{\rm OPE} R_E^2 + \delta_{\rm TPE}$$

- 核结构效应修正:
 - $\propto R_E^2 \Longrightarrow$ 单光子交换中的核结构效应 ${\cal A}_{
 m OPE} pprox m_\mu^3 (Zlpha)^4/12$

● 从µ原子兰姆位移提取核电荷半径

 $\delta E_{\rm LS} = \delta_{\rm QED} + \mathcal{A}_{\rm OPE} R_E^2 + \delta_{\rm TPE}$

- 核结构效应修正:
 - $\delta_{\mathrm{TPE}} \Longrightarrow$ 双光子交换中的核结构效应
 - 弹性贡献项: Zemach moment δ_{Zem}

• 非弹性贡献项: 核极化效应 δ_{pol}

● 从µ原子兰姆位移提取核电荷半径

 $\delta E_{\rm LS} = \delta_{\rm QED} + \mathcal{A}_{\rm OPE} R_E^2 + \delta_{\rm TPE}$

- 核结构效应修正:
 - $\delta_{\mathrm{TPE}} \Longrightarrow$ 双光子交换中的核结构效应
 - 弹性贡献项: Zemach moment δ_{Zem}
 - 非弹性贡献项: 核极化效应 δ_{pol}

 提取核半径R_E的准确度依赖于δ_{TPE}的理论输入 μ²H实验: δ_{pol}需要1%的理论精度

 $\mu^{3,4}$ He⁺实验: δ_{pol} 需要5%的理论精度

由求和规则计算核极化效应

$$\delta_{\rm pol} = \sum_{g, S_{\widehat{O}}} \int_{\omega_{th}}^{\infty} d\omega \underbrace{g(\omega)}_{\mathbf{\chi} \underline{g}} \underbrace{S_{\widehat{O}}(\omega)}_{\texttt{5}\texttt{4}\texttt{4}\texttt{h}\texttt{a}\texttt{5}}$$

能量求和权重 g(ω)
 核结构函数 S_ô(ω)

$$S_O(\omega) = \sum_f |\langle \psi_f | \hat{O} | \psi_0 \rangle|^2 \delta(E_f - E_0 - \omega)$$

由求和规则计算核极化效应

 μ 原子中核极化效应 $\delta_{
m pol}$ 的贡献项:

- 电磁多极矩展开
 - E0, E1, E2求和规则
- 相对论效应与库仑扭曲效应修正
- 核子内部结构修正

CJ, Bacca, Barnea, Hernandez, Nevo-Dinur, JPG 45 (2018) 093002

由光核反应实验提取核结构函数S_心

$\sigma_{\gamma}(\omega) = 4\pi^2 \alpha \omega S_{E1}(\omega)$

由光核反应实验提取核结构函数S_介

$\sigma_{\gamma}(\omega) = 4\pi^2 \alpha \omega S_{E1}(\omega)$

由第一性原理计算核极化效应 $\delta_{\rm pol}$

- $\mu^{2,3}$ H, $\mu^{3,4}$ He⁺:
 - 第一性原理数值计算方法

Effective Interaction Hyperspherical Harmonics (超球简谐基展开) Lorentz Integral Transform (核结构函数) Lanczos Algorithm (求和规则)

束缚态 → 共振/散射态

超球简谐基展开:束缚态

核结构函数: 连续谱

● 原子核在双光子交换过程中被虚激发

$$S_O(\omega) = \sum_{f} |\langle \psi_f | \hat{O} | \psi_0 \rangle|^2 \delta(E_f - E_0 - \omega)$$

由第一性原理计算核极化效应 $\delta_{\rm pol}$

- $\mu^{2,3}$ H, $\mu^{3,4}$ He⁺:
 - 第一性原理数值计算方法

Effective Interaction Hyperspherical Harmonics (超球简谐基展开) Lorentz Integral Transform (核结构函数) Lanczos Algorithm (求和规则)

束缚态 → 共振/散射态

● 核子-核子间相互作用势

AV18+UIX χ EFT $NN(N^{3}LO)+NNN(N^{2}LO)$ 对比两种核力模型下 δ_{pol} 计算结果的差异,分析核理论误差

> <u>CJ</u>, Nevo-Dinur, Bacca, Barnea, PRL 111 (2013) 143402 Hernandez, <u>CJ</u>, Bacca, Nevo-Dinur, Barnea, PLB 736 (2014) 344 Nevo Dinur, <u>CJ</u>, Bacca, Barnea, PLB 755 (2016) 380 Hernandez, Ekström, Nevo Dinur, <u>CJ</u>, Bacca, Barnea, PLB 788 (2018) 377 <u>CJ</u>, Bacca, Barnea, Hernandez, Nevo-Dinur, JPG 45 (2018) 093002

核极化&双光子交换效应:核理论误差

核极化&双光子交换效应:其他理论误差

数值计算误差

超球简谐基收敛性(μ⁴He⁺)

原子理论误差

- (Zα)⁶修正 高阶于双光子交换
- 相对论与库仑扭曲修正对电磁多极矩求和 规则的修正
- 核子结构高阶修正
- 原子理论总误差
 - 1.5% in μ^3 He⁺
 - 1.3% in µ⁴He⁺

● 综合全部误差分析:

 $\delta_{\text{TPE}}(\mu^{3}\text{He}^{+}) = -14.72 \text{ meV} \pm 2.1\%$ $\delta_{\text{TPE}}(\mu^{4}\text{He}^{+}) = -8.49 \text{ meV} \pm 4.6\%$

计算结果满足μ^{3,4}He⁺实验对δ_{TPE}所需5%的精度

 μ^2 H实验所得氘核半径(r_d)误差由 δ_{TPE} 理论误差主导

研究手征有效场核力计算δ_{TPE}(μ²H)在幂次展开下的逐阶收敛
 Hernandez, Ekström, Nevo Dinur, <u>CJ</u>, Bacca, Barnea, PLB 788 (2018) 377

从²H康普顿散射到核极化效应

• 由光学原理提取核结构函数: $S_L(\omega, q) = \frac{1}{\pi} \text{Im} \mathcal{T}_{00}$

无π介子有效场核力下核结构函数S_L(ω,q)逐阶收敛

总结

● 质子半径之谜与μ原子中的兰姆位移

- 向轻子普适性提出潜在的挑战
- 核极化效应将光核反应与原子光谱联系起来
- 通过第一性原理计算μ原子中核极化效应
 - 将理论输入提高到百分比的精度
 - 比由光核反应数据提取的核极化结果更加精确
- 手征有效场理论为系统分析核理论精度提供了可能
 - 无 π 介子有效场核力与光学原理计算²H的结构函数 $S_L(\omega,q)$
 - 今后将推广到计算³H与³He的结构函数

合作者

O.J. Hernandez, S. Bacca	Johannes Gutenberg-Universität Mainz / TRIUMF
N. Nevo-Dinur	TRIUMF
N. Barnea	Hebrew University
A. Ekström	Chalmers University of Technology
L. Platter	University of Tennessee, Knoxville
S.B. Emmons	Carson-Newman University